六年级数学下册比例教案

时间:2023-01-06 22:51:13 数学教案 我要投稿

六年级数学下册比例教案(通用20篇)

  作为一名教师,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。我们该怎么去写教案呢?以下是小编收集整理的六年级数学下册比例教案,欢迎大家借鉴与参考,希望对大家有所帮助。

六年级数学下册比例教案(通用20篇)

  六年级数学下册比例教案 篇1

  教学目标

  1.使学生能正确判断应用题中涉及的量成什么比例关系.

  2.使学生能利用正、反比例的意义正确解答应用题.

  3.培养学生的判断推理能力和分析能力.

  教学重点

  使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.

  教学难点

  利用正反比例的意义正确列出等式.

  教学过程

  一、复习准备.(课件演示:比例的应用)

  (一)判断下面每题中的两种量成什么比例关系?

  1.速度一定,路程和时间.

  2.路程一定,速度和时间.

  3.单价一定,总价和数量.

  4.每小时耕地的公顷数一定,耕地的总公顷数和时间.

  5.全校学生做操,每行站的人数和站的行数.

  (二)引入新课

  我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的'知识可以解决一些实际问题.这节课我们就来学习比例的应用.

  教师板书:比例的应用

  二、新授教学.

  (一)教学例1(课件演示:比例的应用)

  例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?

  1.学生利用以前的方法独立解答.

  140÷2×5

  =70×5

  =350(千米)

  2.利用比例的知识解答.

  (1)思考:这道题中涉及哪三种量?

  哪种量是一定的?你是怎样知道的?

  行驶的路程和时间成什么比例关系?

  教师板书:速度一定,路程和时间成正比例

  教师追问:两次行驶的路程和时间的什么相等?

  怎么列出等式?

  解:设甲乙两地间的公路长 千米.

  =

  2 =140×5

  =350

  答:两地之间的公路长350千米.

  3.怎样检验这道题做得是否正确?

  4.变式练习

  一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

  (二)教学例2(课件演示:比例的应用)

  例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?

  1.学生利用以前的方法独立解答.

  70×5÷4

  =350÷4

  =87.5(千米)

  2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

  这道题里的路程是一定的,_________和_________成_________比例.

  所以两次行驶的_________和_________的_________是相等的.

  3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?

  4 =70×5

  =87.5

  答:每小时需要行驶87.5千米.

  4.变式练习

  一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?

  六年级数学下册比例教案 篇2

  教学目标

  1.结合丰富的实例,认识反比例。

  2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

  3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

  教学重点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学难点

  认识反比例,能根据反比例的`意义判断两个相关联的量是不是成反比例。

  教学过程

  一、复习

  1.什么是正比例的量?

  2.判断下面各题中的两种量是否成正比例?为什么?

  (1)工作效率一定,工作时间和工作总量。

  (2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

  (3)正方形的边长和它的面积。

  二、导入新课

  利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

  三、进行新课

  1.情境(一)

  认识加法表中和是12的直线及乘法表中积是12的曲线。

  引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

  2.情境(二)

  让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

  同桌交流,用自己的语言表达。

  写出关系式:速度时间=路程(一定)

  观察思考并用自己的语言描述变化关系乘积(路程)一定。

  3.情境(三)

  把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

  写出关系式:每杯果汁量杯数=果汗总量(一定)

  以上两个情境中有什么共同点?

  4.反比例意义

  引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

  六年级数学下册比例教案 篇3

  教学目标

  1、知识与技能目标:

  (1)学生能正确判断应用题中涉及的量成什么比例关系,能正确利用正反比例的意义正确解答实际问题。

  (2)让学生掌握用比例知识解决问题的解题步骤和方法。

  (3)进一步提高学生运用已学知识进行分析、判断和推理的能力。

  2、过程与方法目标:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  3、情感态度和价值观目标:

  感受数学知识与实际生活的密切联系,发展学生探究解决问题策略的能力,体验解决问题的`乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  教学工具

  ppt课件

  教学过程

  一、复习旧知,导入新课。

  1、师:同学们,前几节课我们刚刚学习了正反比例的意义,首先我们通过一组练习来复习一下。

  2、课件出示习题。

  指名学生回答,并说明理由。

  3、揭题。

  师:这节课,我们就来学习用正反比例的知识解决问题。

  二、探究体验,获取新知。

  (一)、教学例5.

  师:我们先看看李奶奶遇到了什么问题?(课件出示例5)

  1、收集信息,理解题意。

  师:从图中你获得了哪些数学信息?

  (指名学生汇报)

  2、组织学生用学过的方法自主解决问题。

  师:你能用以前学过的方法解答吗?试一试。

  ①学生尝试用自己喜欢的方法解答,教师巡视了解情况。

  ②指名学生汇报解题方法,并让学生说一说是怎样想的。

  生可能的答案有:28÷8×10=35(元) 10÷8×28=35(元)

  ③教师指出也可用比例的知识解答。

  3、用比例知识解决问题。

  (1)学生独立思考和讨论问题。

  师:这道题还可以用比例的知识来解答,怎样用比例的知识解答呢?请同学们先思考和讨论以下问题。(课件出示)

  要求:先独立思考后,再小组内交流讨论。

  ①题中有哪两种相关联的量?

  ②哪个量是一定的?

  ③它们成什么比例关系?你是依据什么判断的?

  ④根据这个比例关系,你能列出等式吗?

  (2)学生交流讨论后,指名学生汇报,并引导学生概括出等量关系式。

  (3)学生尝试用正比例知识解决问题。

  师:你能完整的把这道题用比例知识解答吗?

  学生尝试用比例知识解答,教师巡视了解情况,知道个别有困难的学生。

  (4)指名学生板演过程,集体交流订正。教师提醒学生要检验。

  (5)师:你认为在解题过程中有什么需要注意的地方要提醒给大家呢?(指名学生回答)

  4.小结。

  思考以下问题:

  用比例知识解决这个问题的关键是什么?

  找到不变的量,只要两个量的比值一定,就可以用正比例关系解答。

  5.习题巩固

  我会分析:(课件出示)

  学生独立审题并解答。集体订正。

  (二)教学例6.

  1.课件出示例6.

  师:你能根据刚才总结的经验试着解决下面的问题吗?

  2.课件出示自学提示:

  (1)题中有哪两种相关联的量?

  (2)哪个量是一定的?

  (3)它们成什么比例关系?

  (4)根据比例关系列出方程并解答。

  学生思考后独立解答,教师巡视了解情况,并指名板演。

  3.集体评讲。

  4.小结。

  思考:

  1.你认为用比例解决问题的关键是什么?

  指名学生回答他生补充,课件出示总结。

  2.用正反比例解决问题的步骤有哪些?

  (1)学生先独立思考后,小组交流,指名汇报。

  (2)师生总结。(课件展示)

  ①找(找相关联的量)

  ②判(相关联的量成什么比例)

  ③列(列出方程)

  ④解(解方程)

  ⑤验(检验计算结果)

  三、习题巩固。

  基础练习:只列式不计算。

  1.运动会上,六年级同学进行大型体操表演,每行站20人,可以站18行;若每行站40人,可以站χ行?

  2.小兰身高1.5米,她的影长是2.4米,如果同一时间、同一地点测得一棵树的影长为4米,这棵树高χ米。

  3.小华读一本书,每天读10页,30天可以读完;如果每天多读5页,χ天可以读完。

  (学生先独立解答后,指名回答,并讲解列式的依据。)

  拓展练习:

  修一条路,计划每天修90米,40天完成,实际5天修了300米,照这样计算,多少天可以完成任务?

  (学生先独立解答,师巡视指导,找不同做法的同学回答,他生订正)

  四、作业

  教材63页练习十一4、5、7、8题。

  五、课堂小结。

  通过本节课的学习,你有哪些收获?

  指名学生说一说本节课的收获,他生补充。

  板书

  用比例解决问题

  例5 解:设李奶奶家上个月的水 例6 解:设原来5天的用电量

  费是x元。 现在可以用x天。

  28:8=x:10 25x=100×5

  8x=28×10 x=100×5÷25

  X=35 x=20

  答:李奶奶家上个月水费 答:原来5天的用电量现在

  是35元。 可以用20天。

  六年级数学下册比例教案 篇4

  教学目标

  1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

  2.复习用正比例方法解答应用题。

  3.复习用反比例方法解答应用题。

  教学重点和难点

  判断两种相关联的量成什么比例;确定解答应用题的方法。

  教学过程设计

  (一)复习数量关系

  判断两种相关联的量成不成比例,确定解答应用题的方法。

  1.被除数一定,除数和商。

  2.一条路,已修的和未修的。

  3.梯形的上、下底长度一定,梯形的面积和它的高度。

  4.每块砖的面积一定,砖的块数和铺地面积。

  5.挖一条水渠,参加的人数和所需要的时间。

  6.从甲地到乙地所需的'时间和所行走的速度。

  7.单位面积一定,播种面积和总产量。

  8.时间一定,速度和距离。

  9.订阅《北京儿童》的份数和所需钱数。

  (二)复习应用题

  1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

  第一步,先找对应关系:

  8天56台

  31天?台

  第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

  请你在对应关系的旁边写上正字,决定用正比例方法做。

  解 设到月底可生产x台。

  x=217

  答:照这样速度月底可生产217台。

  2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

  第一步,先找对应关系:

  20页600本

  24页?本

  第二步,判断成什么比例?(纸张总页数一定,成反比例。)

  请你在对应关系的旁边写上反字,决定用反比例方法做。

  解 钉成24页一本的练习本,可钉x本。

  24x=20600

  x=500

  答:如果钉成24页一本的练习本可钉500本。

  学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

  (1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

  (2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

  (三)练习解答两步的比例应用题

  1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

  黑板上的对应关系变成:

  解 设x天读完。

  (6+4)x=630

  10x=630

  x=18

  答:18天可以读完。

  2.在第1题的基础上,改变问题。

  李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

  对应关系:

  解 设如果每天多读4页,x天读完。

  (6+4)x=630

  10x=630

  x=18

  30-18=12(天)

  答:提前12天读完。

  (指导学生分析、比较。)

  以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

  练习(学生独立分析,做题。)

  1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

  解 设甲城到乙城有x千米。

  3x=105(3+1.2)

  x=147

  答:甲城到乙城有147km。

  2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?

  解 设剩下的x天可以收割完。

  90x=554

  x=3

  答:剩下的3天可以收割完。

  (再用间接设的方法做两道题。)

  1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

  1642=24x

  42-x

  2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

  12x=4815

  x-48

  (四)总结

  这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

  课堂教学设计说明

  解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

  第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

  第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

  第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

  六年级数学下册比例教案 篇5

  教学目标:

  1.结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

  2.运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些问题。

  3.进一步体会数学与日常生活的密切联系。

  教学重点:目标1、2。

  教学难点:目标2。

  教学过程:

  活动一、创设情境,引入新知

  笑笑家新买了一套房子,爸爸拿回了新房子的平面图,现在让我们也一起看看吧。

  1.出示平面图。

  2.观察图,说说从图中知道了什么?

  3.思考:比例尺1:100是什么意思?

  (1)独立思考。

  (2)同伴交流。

  (3)汇报。

  得出:比例尺表示图上距离与实际距离的比。1:100的含义是图上1厘米的线段表示实际100厘米。

  4.量一量平面图中笑笑卧室的长是( )厘米,宽是( )厘米。笑笑卧室实际的长是( )米,宽是( )米,面积是( )平方米。直接提出“笑笑卧室实际的面积是多少平方米?

  (1)学生四人小组合作完成。

  (2)汇报交流。

  强调:必须先求出实际的长和宽,然后再算出实际的面积。

  5.笑笑家的总面积是多少平方米?

  (1)学生独立完成。

  (2)集体订正。

  6.在父母卧室南墙正中有一扇宽为2米的窗户,在平面图标出来。

  (1)理解题意。

  (2)独立思考、交流方法,即要根据比例尺和实际距离先求出平面距离,然后再在图中标出。

  (3)进行计算。

  7.笑笑在本子上画自己卧室的平面图,她用8厘米表示自己卧室的长。

  (1)图上1厘米表示的实际距离是多少厘米?

  (2)她画的平面图的比例尺是多少?

  活动二、试一试

  1.小明家在北京,他和妈妈要到上海去旅游。算一算两地之间的实际距离大约是( )千米。

  (1)理解题意,独立思考。

  (2)交流自己的想法。

  (3)进行计算。

  活动三、练一练

  1.完成32页第2题。

  (1)独立完成。

  (2)汇报交流。

  (3)提出问题。

  2.一张地图上,用3厘米表示实际距离600米,求这张地图的比例尺。

  (1)独立计算。

  (2)汇报,全班交流。

  (3)说说自己的.想法。

  活动四、实践活动

  1.找一张中国地图,量一量,算一算。

  (1)量出北京和台北之间的距离是( )厘米,它们之间的实际距离大约是( )千米。

  (2)量出乌鲁木齐和上海之间的距离是( )厘米,它们之间的实际距离是( )千米。

  2.找一张中国地图,用▲表出你家乡的大致位置。

  (1)估一估在地图上你的家乡与北京的距离大约是( )厘米,实际距离大约是( )千米。

  (2)放暑假时,你打算从( )到( )去旅游,两地之间的实际距离大约是( )千米。

  3.量一量你的卧室的长和宽,以及一些家具的长和宽,然后以1:100的比例尺画出你卧室的平面图。

  学生可以在家长的帮助下,在家里完成。

  课后小结:说说你今天的收获和问题。

  六年级数学下册比例教案 篇6

  教学内容:正比例的意义。

  教学目的:使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。

  教学重点:正比例的意义。

  教学难点:正比例的判断。

  教具准备:小黑板、投景影片

  教学过程:

  一、 复习

  根据下面各题,先口答列式及得数,后说数量关系式。

  1、 一列火车2 小时行驶250千米,平均每小时行驶多少千米?

  2、 一种布,买3米共要27元,平均每米布多少元?

  3、 某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?

  师据学生回答板书如下:

  路程/时间=速度 总价/数量=单价 工作总量/工作时间=工作效率

  二、引新

  我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)

  三、新授

  1、 教学例1。一列火车行驶的时间和所行的路程如下表。

  时间(时) 1 2 3 4 5 6 7 8

  路程(千米) 90 180 270 360 450 540 630 720

  (1) 引导学生观察上表内数据。

  (2) 边观察边思考下面问题:

  (1) 表中有哪几种量?这两促量有没有关系?

  (2) 这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)

  (3) 引导学生分析这两种相关联的量的变化有什么规律?

  (1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:

  90/1=90 360/4=90 540/6=90

  (2)从下面的'比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)

  (3)师:它们之间的关系可以用式子表示

  路程/时间=速度(一定)

  (4) 小结。

  时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

  2、 教学例2

  (1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。

  数量(米) 1 2 34 5 6 7

  总价(元) 8.2 16.4 24.6 32.8 41.0 49.2 57.4

  (2)引导学生观察上表内的数据。

  (3) 回答下面风个问题:

  表中有哪两种量?这两种量有关系吗?为什么?

  这两种量是怎样变化的?

  它们的变化有什么规律?

  相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?

  (4) 小结。

  花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。

  3、 概括正比例的意义及关系式。

  (1) 比较上面的例1和例2,它们有什么共同点?

  (2) 判断成正比例量的方法:是什么?

  (3) 师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  (4) 概括关系式:

  Y/X=K(一定)

  4、 教学例3。

  出示例3

  师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)

  5、 小结。

  判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。

  四、巩固练习

  第13页做一做

  五、 总结。

  1、 什么叫成正比例的量?

  2、 怎样判断两种量是成正比例的量?

  六、 作业:

  完成练习六第1-3题。

  六年级数学下册比例教案 篇7

  教学内容:

  成反比例的量。

  教学目的:

  使学生理解反比例的意义,会正确判断两种相关联的量是否成反比例,培养学生判断能力。

  教学重点、难点:

  反比例的意义和正确判断成反比例的量。

  教具准备:

  小黑板、投影片。

  教学过程

  一、 复习

  1、 口答正比例的意义。

  2、 怎样判断两种量成正比例?

  3、 写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?

  (1) 已知每小时加工零件数和加工时间,求加工零件总数。

  (2) 已知每本书的价钱和购买的本数,求应付的钱。

  (3) 已知每公亩产量和公亩数,求总产量。

  二、引新

  在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)

  三、 新授

  1、 教学例4。

  (1)出示例4。

  引导学生观察上表内数据,然后回答下面的问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、加工的时间是否随着每小时加工的个数的变化而变化?怎样变化?

  C、表中两个相的数的比值是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律?

  D、这个积表示什么?写出表示它们之间的数量关系式。

  学生口答,师板书

  小结:

  2、教学例5

  用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系?请你先填写下表。

  每本的页数 15 20 25 30 40 60

  装订的本数 40

  (1) 先填表,然后观察上表,回答下列问题:

  表中有哪两种量?

  装订的本数是怎样随着每本的页数变化而变化的?

  表中相对应的每两个数的乘积各是多少?

  你从中发现什么规律?写出它们的数量关系式?

  学生回答,教师板书如下:

  每本页数装订的本数=纸的总页数(一定)

  (2) 小结:

  从上表可以看出:每本的页数和装订的本数也是两种相关联的量,装订的本数是随着本页数的变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。它们扩大、缩小的规律是:每本的页数和装订的本数的积总是一定的。

  (3) 归纳反比例的意义及关系式。

  (1)请你比较一下上面的例4、例5,它们有什么共同特点?(教师引导学生归纳概括出反比例的意义)

  (2)判断成反比例量的方法:根据反比例的意义判断两种量是否面反比例的量要具备的条件:

  a两种相关联的量。

  b一种量变化,另一种也随着变化。

  C两种量中相对应的两个数的积一定。

  (3)例4中,加工的时间随着每小时加工数量的变化,每小时加工的数量和加工的`时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量。想一想:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?(指名几个学生口述,教师帮助纠正)

  (4) 概括关系式。

  如果用字母X和Y表示两种相关联的量,用R表示它们的积(一定),反比例关系可以用下面的式子表示:

  XY=R(一定)

  3.教学例6。

  播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

  师:大家能不能根据反比例的意义判断一下?

  指名口述,师讲评。

  (每天播种的公顷数和要用的天数是两6种相关联的量,每天播种的公顷数天数=播种的总公顷数,已知播种的总公顷数一定,也就是每天播种的公顷数和天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。)

  四、小结

  判断两种相关联的量是否成反比例,关键是看两种相关联的量中相对应的两个数的积是否一定,积一定这两种量成反比例。

  讨论:想一想:播种总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?

  五、巩固练习

  课本第16页的做一做练后讲评。

  六、课内外作业

  完成练习三的第4――7题。

  六年级数学下册比例教案 篇8

  教学内容

  根据教科书自选内容。

  教学目标

  1.通过练习,使学生进一步理解并掌握反比例的意义,会正确判断两种相关联的量是否成反比例,并能解决简单的实际问题。

  2.进一步培养学生分析问题、解决问题的能力。

  3.结合实例,培养学生仔细分析、主动探索的良好的学习习惯。

  教学重点

  正确理解反比例的意义,并能作出正确的判断。

  教学难点

  能根据反比例的意义,解决相关的实际问题。

  教学过程

  一、学习准备,揭示课题

  1.谈话引入

  上节课我们学了什么?今天,我们进行练习(板书:反比例练习)。通过练习,达到以下两个目标:

  ①进一步理解反比例的意义,并能正确判断两个相关联的量是否成反比例;

  ②能根据反比例的意义,解决实际问题。

  2.你知道哪些有关反比例的知识

  板书:意义、字母表示:xy=k(一定)

  二、基本练习

  1.观察下面三个表

  (1)表1中的两种量是怎样变化的'?哪种量是一定的?每天烧煤量和烧的天数成什么比例?为什么?

  (2)表2中的两种量是怎样变化的?哪种量是一定的?用去的煤和剩下煤的吨数成比例吗?为什么?

  (3)表3中的两种量是怎样变化的?哪种量是一定的?平行四边形的底和平行四边形的高成什么比例?为什么?

  2.判断

  判断下面各题中的两种量是否成比例。如果成比例,成什么比例?

  (1)平行四边形的面积一定,它的底和高。

  (2)一筐桃平均分给猴子,猴子的只数和每只猴子分的个数。

  (3)报纸的单价一定,订阅的份数与总价。

  (4)小刚跳高的高度和他的身高。

  (5)C=4a

  三、解决问题

  1.巩固练习

  一辆汽车从甲地开往乙地,每时行70 km,5时到达。如果要4时到达,每时需要行驶多少千米?

  (1)学生读题,理解题意。

  (2)会列式解答吗?试试看。还可以怎么解?(引导学生用反比例知识解答)

  2.用比例知识解答

  (1)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

  (2)用同样的砖铺地,铺18 m2要用618块砖。如果铺24 m2,要用多少块砖?

  学生独立分析、解答,教师巡视,并加以指点。

  根据这两道题组织学生讨论正比例关系和反比例关系的相同点和不同点。

  讨论后全班交流,教师引导学生归纳并板书。

  相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。

  不同点:正比例是相对应的两个数的比值(商)一定。反比例是相对应的两个数的积一定。

  四、变式提高练习

  按规律填数。

  (1)(1,36),(2,18),(3,12),(4,),(5,)

  (2)15,210,315,4(),()25

  (3)81,27,(),3,1,()

  五、全课小结

  同学们,今天我们学习了什么?你有什么收获?还有哪些疑问?

  六、拓展练习

  根据自己的生活经验,各构建一道生活中用正比例和反比例解决的问题,再解决,并与同学交流你构建问题的思考方法和解决问题的方法。

  六年级数学下册比例教案 篇9

  【教学目标】

  1.使学生理解比例的意义,能应用比例的意义判断两个比能否成比例。

  2.在比的知识基础上引出比例的意义,结合实例,培养学生将新、旧知识融会贯通的能力。

  3.提高学生的认知能力。

  【教学重点】比例的意义。

  【教学难点】找出相等的比组成比例。

  【教学方法】引导法。

  【学习方法】自主探究。

  【教具准备】ppt课件

  【教学过程】

  一、旧知铺垫

  1.什么是比?

  (1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

  (2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

  2.求下面各比的比值。

  12 :16 1/3 :2/5 4.5 :2.7 10 :6

  二、探索新知

  1.用ppt课件出示课本情境图。

  (1)观察课本情境图。(不出现相片长、宽数据)

  ①说一说各幅图的情景。

  ②图中图片有什么相同之处和不同之处?

  (2)你知道这些图片的长和宽是多少吗?

  (3)这些图片的长和宽的比值各是多少?

  A.6 ∶4= B.3∶2= C.3∶8 =

  D.12∶8= E.12∶2=

  (4)怎样的两张图片像?怎样的两张图片不像?

  ①D和A两张图片,长与长、宽与宽的比值相等,12∶6=8∶4,所以就像。

  ②A长与宽的比是6∶4,B长与宽的比是3∶2,6∶4=3∶2,所以就也像。

  2.认一认。

  图D和图A两张图片,长与长、宽与宽的'比值相等,图A和图B两张图片长和宽的比值相等。

  板书:12∶6=8∶4 6∶4=3∶2

  (5)什么是比例?

  板书:表示两个比相等的式子叫做比例。

  “从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

  比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。

  (6)比较“比”和“比例”两个概念。

  上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (7)找比例。

  在这四副图片的尺寸中,你还能找出哪些比可以组成比例?学生猜想另外两副图片长、宽的比值。求出副图片长、宽的比值,并组成比例。

  如:3∶2 =12∶8 6∶4= 12∶8

  3.右表是调制蜂蜜水时蜂蜜和水的配比情况,根据比例的意义,你能写出比例吗?

  (1)什么样的比可以组成比例?

  (2)把组成的比例写出来。

  (3)说一说你是怎么写的,一共可以写多少个不同的比例。

  三、课堂练习

  1.⑴分别写出图中两个长方形长与长的比和宽与宽的比,判断这两个比能否组成比例。

  ⑵分别写出图中每个长方形与宽的比,判断这两个比能否组成比例。

  2.哪几组的两个比可以组成比例?把组成的比例写出来。15∶18和30∶36 4∶8和5∶20 1/4∶1/16和0.5∶2 1/3∶1/9和1/6∶1/18

  四、课堂小结。

  (1)什么叫做比例?

  (2)一个比例式可以改写成几个不同的比例式?

  【板书设计】 比例的认识

  12∶6 = 8∶4

  内项

  外项

  表示两个比相等的式子叫做比例。

  六年级数学下册比例教案 篇10

  教学目标

  1:能正确判断问题中数量之间的比例关系。

  2:正确利用比例知识解决问题。

  3:通过策略多样化的训练,培养学生的发散性思维。

  教学重难点

  教学重点:能用正、反比例知识解决实际问题。

  教学难点:正确分析题中的比例关系,列出方程。

  教学工具

  课件

  教学过程

  一、复习铺垫,引入新课。

  师:同学们,我们先来回忆一下有关正、反比例的知识。

  师:判断下面每题中的两种量成什么比例?(课件出示)

  (1)速度一定,路程和时间.

  (2)路程一定,速度和时间.

  (3)单价一定,总价和数量.

  (4)每小时耕地的公顷数一定, 耕地的总公顷数和时间.

  (5)全校学生做操,每行站的人数和站的行数.

  【设计意图】 通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

  师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,前面我们学习了比例、正比例、反比例的意义,还学习了解比例。这节课我们就应用比例的知识解决生活中的一些实际问题。板书课题《用比例解决问题》。

  二、探究新知

  1:(一)用正比例的知识解决问题(探究例5)

  过渡语:看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)

  师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?

  学生自己解答,然后交流解答方法。

  2:师:像这样的问题也可以用比例的知识来解决。

  出示自学提纲。

  (1)题目中有几个量。

  (2) 谁和谁成什么比例关系?你是怎么判断的?

  (3)哪个量是固定不变的。

  (4) 根据比例关系,列出等式。

  3:学生交流自学结果,相互补充,呈现一个完整的解答过程。

  师:谁来说说你是怎样用比例知识来解决问题的?

  根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。

  4、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法。

  5、即时练习

  过渡语:同学们帮助李奶奶解决问题,我们一起去看看王大爷家又发生了什么事情呢?

  出示对话情景。

  师:观察帮助要王大爷的问题和帮助李奶奶的事对比,你有什么发现?

  在学生的交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。

  小结:用正比例解决问题的关键是找到不变量,只要两个量的比值一定,就可以用正比例关系解答。

  (二)用反比例的知识解决问题(学习P62例6)

  师:解决了生活中水的问题,下面我们一起看看生活的电中蕴含着什么数学问题。

  1课件出示情境图,了解题目条件与问题。

  生:独立解决,并在小组交流解题思路和计算方法。

  学生汇报解题思路。

  过渡语:像这样的问题也能用比例的方法解决。请同学们仿照正比例的解题方法,并参照课本62页的内容,自学例6.

  生:交流汇报解题思路。

  师:谁来和大家分享一下你们的结果。

  师:(教师手指25x=100×5,x=20。)为什么这样列式?根据是什么?

  生汇报:因为总的用电量一定,所以用电天数和每天的用电量成反比例.也就是说,每天的用电量和天数的乘积相等。

  2.即时练习

  课件出示:现在30天的用电量原来只够用多少天?

  师:会解决吗?

  生:独立解决,交流订正。

  小结:解决这个问题的关键是找到哪两个量的乘积一定。只要两个量的乘积一定,就可以用反比例关系来解答。 3:总结用比例解决问题的几个步骤:

  (1) 梳理相关联的两种量。

  (2) 判断相关联的`两种量成什么比例。

  (3) 解比例。

  (4) 用自己熟练的方法来检验。

  三:巩固练习

  1:小明买4支圆珠笔用6元。小刚想买3支同样的圆珠笔,要用多少钱?(要求用比例知识解)

  学生自己独立解决问题并说说原因。

  学情预设:小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。

  2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4支单价是1.5元的,如果他只买单价是2元的,可以买多少支。

  第2题,用反比例关系可以解决这个问题。

  设计意图:再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。

  四:课堂小结

  通过这节课的学习,你有哪些收获?谈谈你的感受。

  板书

  用比例解决问题

  解:设李奶奶家上个月的水费是x元。 解:设原来5天的用电量现在可以用x天。

  X:10=28:8 25x=100×5

  8x=28×10 x=500÷25

  X=35 x=20

  答:李奶奶家上个月的水费是35元。 答:原来5天的用电量现在可以用20天

  六年级数学下册比例教案 篇11

  教学目标:

  1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。

  2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

  3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

  教学重点:

  理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。

  教学难点:

  运用比例尺的有关知识,学会解决生活中的一些实际问题。

  教学准备:多媒体课件。

  教学过程:

  一、展示目标,引入本课。

  二、探究新知,意义建构

  1、看一看

  下面几幅地图的比例尺分别是多少。

  ①中华人民共和国这幅地图的比例尺是多少?(1:6000000)

  ②安庆市这幅地图的比例尺是多少?(1:2500000)

  ③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)

  2、说一说

  (1)比例尺1:100表示什么意思呢?

  生:图上1厘米长的.线段表示实际距离100厘米。

  (2)在比例尺1:2000的地图上,图上距离1厘米,表示实际距离(2000)厘米。

  (3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。

  3、议一议

  (1)什么是比例尺呢?

  图上距离和实际距离的比,叫做比例尺。

  (2)比例尺怎样表示呢?

  比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)

  (3)比例尺有什么特征呢?

  ①比例尺与一般的尺子不同,它是一个比,不带计量单位;

  ②图上距离和实际距离的单位是统一的;

  ③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。

  【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。

  三、拓展延伸,巩固新知

  1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?

  70:3.5=700:35=20:1

  答:这幅设计图纸的比例尺是20:1。

  2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)

  3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?

  32×6000000=192000000(厘米)192000000厘米=1920(千米)

  答:广州到北京实际距离是1920千米。

  五、总结新课,整理知识

  通过今天的学习,你有什么收获呢?

  板书设计:比例尺

  比例尺=图上距离:实际距离

  实际距离=图上距离×1厘米表示的实际距离

  图上距离=实际距离÷1厘米表示的实际距离

  六年级数学下册比例教案 篇12

  第四课时

  教学目标:

  1、使学生学会解比例的方法

  2、进一步理解和掌握比例的基本性质。

  3、进一步体会数学知识之间的联系,感受学习数学的乐趣。

  重点难点:

  学会解比例,掌握解比例的书写格式

  教学过程:

  一、导人新课

  教师:前面我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。

  二、教学新课

  1、出示例5

  (1)审题,帮助学生理解题意。提问:怎样理解把照片按比例放大这句话?(放大前后的相关线段的长度是可以组成比例的)

  (2)如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。 告诉学生:像上面这样求比例中的'未知项,叫做解比例。

  (3)讨论:怎样解比例?根据是什么?

  (4)思考:根据比例的基本性质可以把比例变成什么形式? 教师板书:6x=13.54。 这变成了什么?(方程。)

  教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写解:,所以解比例也应写解:。(在6x前加上解:)

  (5)让学生把解比例的过程完整地写出来。指名板书。

  2、总结解比例的过程。 提问

  刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?

  (先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。) 从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

  3、做试一试,学生独立完成,再说说解题思路。

  三、巩固练习

  1、做练一练

  2、做练习七第6、7题。

  先说说按比例缩小或放大的含义。再列出相应的比例式并求解。

  3、做练习七第8、9题

  学生独立审题并解题。讲评时重点指导学生解决第(2)问。

  4、完成思考题

  四、全课小结。

  五、课堂作业 补充习题34页

  六年级数学下册比例教案 篇13

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:

  比例的基本质性。

  教学难点:

  发现并概括出比例的基本质性。

  教具准备:

  多媒体课件

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?

  2.应用比例的意义,判断下面的比能否组成比例。

  0.5:0.25和0.2:0.4

  0.5 :0.2和5:2

  1/2:1/3 和6 : 4

  0.2:0.8和1:4

  二、探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书

  组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:2.4:1.6 = 60:40

  内项:1.6 6o

  外项:2.4 40

  (2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

  如:2.4 :1.6 = 60:40

  外 内 内 外

  项 项 项 项

  2.比例的基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1) 学生独立探索其中的规律。

  (2) 与同学交流你的发现。

  (3) 汇报你的发现,全班交流。(师作适当的补充)

  在比例里,两个内项的积等于两个外项的积。

  板书

  两个外项的积是2.440=96

  两个内项的积是1.660=96

  外项的`积等于内项的积。

  (4) 举例说明,检验发现。

  0.6 :0.5=1.2: 1

  两个外项的积是 0.61 =0.6

  两个内项的积是0.51.2=0.6

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如:2.4/1.6 = 60/40

  3.440=1.660

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5) 学生归纳。

  在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

  4.填一填。

  (1)1/2:1/5 =1/4:1/10

  ( )( )=( )( )

  (2)0.8:1.2=4:6

  ( )( )=( )( )

  (3)45=210

  4:( )=( ):( )

  5.做一做。

  完成课本中的做一做。

  6.课堂小结

  (1) 说一说比例的基本性质。

  (2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

  三、巩固练习

  完成课文练习六第4~6题。

  补充习题

  一题多变化,动脑解决它

  (1)在比例里,两个内项的积是18,

  其中一个外项是2,另一个外项是()。

  (2)如果5a=3b,那么, = ,

  (3)a︰8=9︰b,那么,ab=( )

  教学反思:

  比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

  六年级数学下册比例教案 篇14

  教学内容:教科书94页“练习与实践”的第7~10题。

  教学目标:

  1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

  2、能运用比和比例的'知识解决一些简单实际问题,积累解决问题的经验。

  教学重点:

  使学生加深认识比例的意义和基本性质。

  教学难点:

  能判断两个比能能不能组成比例,能比较熟练地解比例。

  教学准备:多媒体

  教学过程:

  一、与反思

  今天我们一起来复习正比例和反比例相关知识。

  怎样判断两种量是否成正比例或反比例关系?

  学生交流

  二、练习与实践

  1.完成“练习与实践”第7题

  让学生先独立完成,再点评。

  2.完成“练习与实践”第8题

  引导学生列举几组对应的数值

  再分析每组中两个数的关系,再判断。

  3.完成“练习与实践”第9题

  第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)

  第2小题让学生在教材的方格图上描点、连线,

  引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。

  体会数形结合在解决问题方面的价值。

  4.完成“练习与实践”第10题

  什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)

  怎样求图上距离?怎样求实际距离

  学生量出的图上距离。

  利用的线段比例尺,求出相应的实际距离

  三、

  通过学习你有什么收获?

  学生交流

  四、作业

  完成《练习与测试》相关作业。

  板书设计

  关于正比例和反比例的复习

  六年级数学下册比例教案 篇15

  教学内容:

  比例

  第五课时

  教学目标:

  1、使学生在具体情境中理解理解比例尺的意义,能看懂线段比例尺。

  2、求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。

  3、使学生在观察、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

  重点难点:

  使学生理解比例尺的含义,会求一幅图的比例尺,看懂线段比例尺。

  教学过程:

  一、复习

  1厘米= ( )毫米

  1分米= ( )厘米

  1米= ( )分米

  1千米= ( ) 米

  20米= ( )厘米

  50千米=( )厘米

  二、情境导入

  1、谈话:同学们,我国历史悠久,地域辽阔,国土面积大约有960万平方千米。但这么辽阔的地域却可以用一张并不很大的纸画下来。 出示大小不一的中国地图,并提问:想知道这些地图是怎样绘制出来的吗?今天我们就学习 这方面的知识比例尺。 板书课题:比例尺

  三、自主探究,理解比例尺的意义。

  1、出示例6,在学生理解题意后提问:题目要求我们写出几个比?这两个比分别是哪两个数量的比?什么是图上距离?什么是实际距离?

  2、探索写图上距离和实际距离的比的方法。

  提问:图上距离和实际距离单位不同,怎样写出它们的比?

  引导学生通过交流,明确方法:先要把图上距离和实际距离统一成相同的单位,写出比后再化简。

  学生独立完成后,展示、交流写出的比,强调要把写出的比化简。

  3、揭示比例尺的意义以及求比例尺的方法。

  谈话:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。

  提问:这张长方形草坪平面图的比例尺是多少? 启发:可以怎样求一幅图的比例尺呢? 根据学生的回答,相机板书: 图上距离:实际距离=比例尺

  4、进一步理解比例尺的实际意义,认识线段比例尺。

  提问:我们知道这幅图的比例尺是1:1000,也可以写成1/1000。1:1000的意思是图上1厘米的.线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。 图上距离/实际距离=比例尺

  指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。比例尺1:1000还可以用下面这样的形式来表示。 0 10 20 30米

  进一步指出:像这样的比例尺通常叫做线段比例尺。

  提问:从这个线段比例尺来看,图上的1厘米表示实际距离多少米?图上的2厘米、3厘米分别表示实际距离多少米?这与1:1000的含义相同吗?

  四、巩固练习。

  1、做练一练第1题。

  先说说每幅图中比例尺的实际意义。同样长的实际距离在哪幅图中画得长?哪幅图中1厘米的图上距离表示的实际距离长?

  2、做练一练第2题。让学生各自测量、计算,再交流思考过程。

  3、指出

  ①比例尺与一般的尺不同,这是一个比,不应带计量单位。

  ②求比例尺时,前、后项的长度单位一定要化成同级单位。如 2.5厘米:1O千米,要把后项的千米化成厘米后再算出比例尺。

  ③为了计算简便,通常把比例尺的前项化简成1,如果写成分数形式,分子也应化简成1。

  五、全课小结。

  这节课你学会了什么?你有哪些收获和体会?计算一幅图的比例尺时要注意什么? 六、课堂作业

  六、课堂作业 补充习题35页。

  六年级数学下册比例教案 篇16

  1.关注教学情境的创设。

  建构主义学习理论认为:学习是学生主动的建构活动,学习应与一定的情境相结合。在实际情境下进行学习,可以激发学生学习的愿望。基于以上认识,教学伊始,通过观察、比较纸面同样大小的中国地图和北京地图的不同点,使学生开始关注比例尺,进而产生想了解比例尺的欲望,并以饱满的情绪进入新知的探究环节。

  2.关注学生的全面发展。

  除接受学习外,动手实践、自主探究与合作交流同样是学生学习数学的重要方式。本节课为学生提供了自主探究、合作学习的机会。在自主探究的过程中,先由学生独立思考,再在小组内互相交流自己的发现和解决方法,然后全班交流。此过程让学生的个性思维能力得到了充分的发展,每个学生都能从其他学生的汇报交流中获取自己需要的信息,这样,有利于促进学生的全面发展。

  3.关注解题技能的形成。

  解决问题是学习数学的.落脚点和归宿点,因此,提高解题能力是学生发展的需要,也是使学生牢固掌握数学基础知识和基本技能的必要途径,同时也是检验数学知识的基本形式。教学中,重视解题技能的形成,精心设置巩固习题,细心引导学生从多角度思考,及时发现共性问题并巧妙点拨,促进学生知识内化,形成技能。

  课前准备

  教师准备 PPT课件 地图

  学生准备 地图

  教学过程

  1.观察比较。

  (1)出示纸面和中国地图同样大小的北京地图。(挂图)

  (2)观察、交流。

  这两幅地图有什么不同?

  预设

  生1:名称和内容不同,一幅是中国地图,另一幅是北京地图。

  生2:比例尺不同,一幅是1∶100000000,另一幅是……(表述合理即可)

  2.质疑。

  同样大小的纸面,为什么一幅能表示出整个中国,而另一幅只能表示出一个城市?

  (鼓励学生各抒己见,明确原因:作图时,选定的比例尺不同)

  3.导入。

  什么是比例尺?这节课我们就来认识它。(板书:比例尺的认识)

  设计意图:通过观察、比较,引发学生的认知冲突,引起学生的深入思考,使学生带着浓厚的探究兴趣进入新知学习阶段。

  ⊙探究新知

  1.教学教材53页例1上面的内容,了解比例尺的意义。

  (1)课件出示自学提纲。

  明确:

  ①什么叫比例尺?

  ②比例尺产生的原因是什么?

  ③比例尺有什么作用?

  ④比例尺是比还是尺?

  ⑤比例尺的文字表达式是什么?

  (2)讨论、交流。

  预设

  生1:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

  生2:有时按照实际尺寸无法绘制平面图,这就产生了把实际距离按一定的比缩小(或扩大)的需求,因此就产生了比例尺。

  生3:比例尺有放大和缩小两方面的作用。

  生4:比例尺不是尺,是比。

  生5:图上距离∶实际距离=比例尺或=比例尺。

  2.观察实物地图(第一幅地图的比例尺是1∶100000000,第二幅地图的比例尺是),了解比例尺的两种表现形式。

  (1)观察、讨论。

  ①第一幅地图的比例尺属于什么比例尺?它表示什么?

  ②第二幅地图的比例尺属于什么比例尺?它表示什么?

  (2)交流、补充。

  预设

  生1:比例尺1∶100000000是数值比例尺,表示图上距离是实际距离的。

  生2:比例尺是线段比例尺,表示地图上1 cm的距离相当于地面上50 km的实际距离。

  (引导学生理解:一小格表示图上距离1 cm,0后面第一个数表示图上距离1 cm代表的实际距离是多少,单位看最后那个单位。两小格表示图上距离2 cm,0后面第二个数表示图上距离2 cm代表的实际距离是多少,单位看最后那个单位,以此类推)

  (3)学习把线段比例尺改写成数值比例尺的方法。

  师:你能把上面的线段比例尺改写成数值比例尺吗?

  ①尝试改写。

  ②指名板演。

  六年级数学下册比例教案 篇17

  教学要求

  1.理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2.培养同学们用发展变化的观点来分析问题的能力。

  3.培养同学们概括能力和分析判断能力。

  教学重点

  理解正比例的意义。

  教学难点

  引导同学们通过观察、发现思考两种相关联的量的变化规律。

  教学过程

  一、复习

  1.已知路程和时间,求速度?

  2.已知总价和数量,求单价?

  3.已知工作总量和工作时间,求工作效率?

  二、新知

  1.教学例1

  投影出示:一列火车1小时行驶90千米,2小时行驶180千米3小时行驶270千米,4小时行驶360千米 ,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米 6

  (1)出示下表,填表

  一列火车行驶的时间和路程:

  时间

  路程

  填表,思考:再填表中你发现了什么?

  点拨:时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)

  根据计算,你发现了什么?

  指出:相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

  用式子表示他们的关系是:路程/时间=速度(一定)(板书)

  (2)教师小结:

  同学们通过填表交流,知道时间和路程是。两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

  2.教学例2

  (1)花布的.米数和总价表:

  数量1234567

  总价8.216.424.632.841.049.257.4

  (2)观察图表,发现什么规律?

  用式子表示它们的关系:总价/米数=单价(一定)

  (3)抽象概括正比例的意义。

  ①比较例1、例2,思考并讨论:这两个例题有什么共同点?

  ②两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

  ③看书,进一步理解正比例的意义。

  ④如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

  x/y=k(一定)

  ⑤根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  3.教学例3

  (1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数,是不是成正比例?

  (2)学生讨论解答。

  六年级数学下册比例教案 篇18

  教学内容:教科书第63页的例2,“练一练”和练习十三的第4、5题。

  教学目标:

  1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

  2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

  3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

  教学重点:能认识正比例关系的图像。

  教学难点:利用正比例关系的图像解决实际问题。

  教学准备:多媒体

  教学过程:

  一、复习激趣

  1、判断下面两种量能否成正比例,并说明理由。

  数量一定,总价和单价

  和一定,一个加数和另一个加数

  比值一定,比的前项和后项

  2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?

  二、探究新知

  1、出示例1的表格

  根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

  你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

  2、学生尝试画出正比例的图像

  3、展示、纠错

  每个点都应该表示路程和时间的一组对应数值。

  4、回答例2图像下面的问题,重点弄清:

  (1)说出每个点表示的'含义。

  (2)为什么所描的点在一条直线上?

  (3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

  借助直观的图像理解两种量同时扩大或缩小的变化规律。

  三、巩固延伸

  1、完成练一练

  小玲打字的个数和所用的时间成正比例吗?为什么?

  根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

  估计小玲5分钟打了多少个字?打750个字要多少分钟?

  2、练习十三第4题

  先看一看、想一想,再组织讨论和交流。要求学生说出估计的思考过程。

  3、练习十三第5题

  先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

  组织讨论和交流

  4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

  根据表中的数据,描出所对应的点,再把它们按顺序连起来。

  同桌之间相互提出问题并解答。

  四、反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

  五、作业

  完成《练习与测试》相关作业

  板书设计

  六年级数学下册比例教案 篇19

  教学内容:第43页例4,完成“试一试”“练一练”和练习十的1~4题。

  教学目标:

  1、使学生认识比例的“项”以及“内项”和“外项”。

  2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

  3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

  教学重、难点:理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。

  教学过程:

  一、创设情境,教学比例的基本知识。

  1、复习:

  师:什么叫比例?下面每组中的两个比能否组成比例?出示:

  1/3∶1/4和12∶9 1∶5和0.8∶4 7∶4和5∶3 80∶2和200∶5

  学生根据比例的意义进行判断,教师结合回答板书:

  1/3∶1/4=12∶9 7∶4≠5∶3 1∶5=0.8∶4 80∶2=200∶5

  2、认识比例各部分的名称

  (1)介绍“项”:组成比例的四个数,叫做比例的项。

  (2)3 :5 = 18 :30 学生尝试起名。

  师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

  3 :5 = 18 :30

  内项

  外项

  (3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

  出示:3/5=18/30

  (4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。

  二、教学例4

  1、提问:你能根据图中的数据写出比例吗?

  (1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

  (2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

  2、学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  3、验证:是不是任意一个比例都有这样的规律?

  ⑴课件显示复习题(4组):

  1/3∶1/4和12∶9; 1∶5和0.8∶4; 7∶4和5∶3; 80∶2和200∶5

  学生验证。

  ⑵学生任意写一个比例并验证。

  教师将学生所举比例故意写成分数形式,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书。通过交叉连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。

  师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。

  引导学生得出:你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的.积。

  师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。

  板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。

  ⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成什么。

  (4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  读书P44页,勾画

  5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  6、比例的基本性质的应用

  (1)比例的基本性质有什么应用?

  (2)做“试一试”:出示“3.6 :1.8和0.5 :0.25”。

  A、先假设这两个比能组成比例

  :让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:3.6 :1.8和0.5 :0.25能组成比例吗? 根据比例的基本性质,能判断两个比能不能组成比例吗?

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  C、根据比例的基本性质判断组成的比例是否正确。

  三、综合练习:

  1、完成练一练

  (1)学生尝试练习。

  (2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

  2、在( )里填上合适的数。

  1.5:3=( ):4

  12:( )=( ):5

  先让学生尝试填写,再交流明确思考方法。

  3、补充一组灵活训练题:

  A、如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

  B、你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。

  C、你能从3、4、5、8中换掉一个数,使之能组成比例吗?

  四、全课小结:

  同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。

  能告诉我比例的基本性质是什么吗?你觉得学了它有什么用处?

  五、课堂作业。

  1、做练习十第1、3题

  2、独立完成2、4题

  板书设计:

  比例的基本性质

  3 :5 = 18 :30

  内项

  外项

  6:4=3:2 4:6=2:3 4:2=6:3 3:6=2:4

  3×4=6×2

  a:b=c:d ad=bc

  在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

  六年级数学下册比例教案 篇20

  教学目标:

  1、使学生经历猜测-验证的过程中,自主发现按比例放大后面积的变化规律

  2、应用面积的变化规律解决一些实际问题。

  3、使学生进一步体会比例的应用价值,提高学习数学的兴趣。

  重点难点:

  探究平面图形按比例放大或者缩小后面积的变化规律。

  教学过程:

  一、 课堂提问

  1.正方形面积的计算公式是什么?

  2.长方形面积的计算公式是什么?

  3.三角形面积的计算公式是什么?

  4.圆面积的计算公式是什么?

  二、 情景导入,合作探究

  1. 出示教科书第48页上面的两个长方形

  说明:大长方形是小长方形按比例放大后得到的。

  (1) 请同学们分别量出两个长方形的长和宽,写出对应的边长之比

  大长方形与小长方形的比是( ):( ),宽的比是( ):( )

  (2) 一个长方形的长和宽按比例放大后,它的面积发生变化吗?会发生怎样的变化呢?这节课我们一起来探究面积的变化 ,板书课题。

  (3) 请同学们先估计一下,大长方形与小长方形的面积比是( ):( ),再通过计算,验证自己估计的对不对?

  (4) 全班交流,使学生初步感知长方形按比例放大后面积的变化规律

  2. 出示教科书48页下面的一组图形

  说明:下面的图形是上面相对应的'图形放大后得到的。

  (1) 请同学们测量相关的数据进行计算,再填写下表,再填写教科书第49页上面的表格

  (2) 组织讨论:通过上面的计算和比较,你发现了什么?

  (3) 小组交流

  (4) 总结:把一个平面图形按N:1的比例放大后,放大后与放大前的面积比是2N:1

  3.启发学生进一步思考:如果把一个平面图形按指定的比例缩小,缩小前后图形面积的变化规律又是什么?

  小组讨论,全班交流

  三、分组练习

  让学生选择第49页图中一幢建筑或一处设施,测量并计算它的实际占地面积

  四、当堂检测

  1. 在比例尺是1:800的平面图上,有一块长方形的草地,长是3.5cm,宽是2cm,它的实际占地面积是多少?

  2. 一块长方形运动场,长150米,宽80米。在一幅比例尺是

  1:250的平面图上,这块长方形运动场的面积是多大?

  3. 在一幅比例尺是1:2000的世界图上,量得一个圆形花坛的直径是2厘米,它的实际面积是多大?

  五、 总结回顾

  通过今天的学习,你又有了哪些新的收获和体会?

【六年级数学下册比例教案】相关文章:

《比和比例》数学教案 比与比例的教案02-20

小学数学六年级下册反比例优秀教案08-26

小学六年级下册数学《正比例》教案01-24

小学六年级下册数学《正比例》教案5篇01-24

小学六年级下册数学《正比例》教案(5篇)01-24

数学反比例教案03-25

小学六年级数学下册二单元《比例的认识》教案(精选7篇)06-16

小学六年级数学下册《比例尺》教案(通用13篇)06-16

六年级数学比和比例教案08-26