平行四边形面积教案

时间:2023-02-10 10:10:30 其它教案 我要投稿

平行四边形面积教案

  作为一名为他人授业解惑的教育工作者,时常需要用到教案,编写教案有利于我们科学、合理地支配课堂时间。教案应该怎么写才好呢?下面是小编帮大家整理的平行四边形面积教案,仅供参考,欢迎大家阅读。

平行四边形面积教案

平行四边形面积教案1

  教学目标:

  1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

  2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

  3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

  教学重点:

  探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:

  平行四边形面积公式的推导方法――转化与等积变形。

  教学方法:

  利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

  教具、学具准备:

  多媒体课件、平行四边形纸片、长方纸卡,剪刀等。

  教学过程:

  一、情境激趣

  二、自主探究

  古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?

  在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?

  1、数方格,比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?

  (学生:麻烦,有局限性。)

  (5)观察表格,你发现了什么?

  出示表格平行四边形底底边上的高面积

  长方形长宽面积

  (6)引导学生交流自己的发现。

  反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

  (7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?

  2、动手操作,验证猜想。

  (1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。

  (2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)

  (3)观察并思考:

  ①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  ②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

  (5)交流反馈,引导学生得出结论

  ①形状变了,面积没变。

  ②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  观察面积公式,要求平行四边形的面积必须知道哪两个条件?

  (平行四边形的底和高)

  (7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?

  (转化图形的形状)

  (8)探究活动小结:我们把平行四边形转化成了同它面积相等的'长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3、运用公式,解决问题。

  (1)出示例1

  例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?

  (2)学生独立完成并反馈答案。

  三、看书释疑P79~81

  四、巩固运用

  1、判断,平行四边形面积的概念。

  (1)、两个平行四边形的高相等,它们的面积就相等()

  (2)、平行四边形的高不变,底越长,它的面积就越大()。

  (3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。

  2、计算,平行四边形的面积。

  3、拓展1,你有几种方法求下面图形的面积?

  4、拓展2比较,等底等高的平行四边形的面积。

  五、课堂总结

  通过这节课的学习,你有哪些收获?(学生自由回答。)

平行四边形面积教案2

  教学目标:

  1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  教学重点:

  1、掌握平行四边形的面积计算公式。

  2、会计算平行四边形的面积。

  教学难点:理解平行四边形面积公式的推导过程。

  教具准备:课件,平行四边形的纸片。

  学具准备:学习卡,每个学生准备一个平行四边形。

  教学过程

  一、导入

  1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。

  2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

  3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

  板书课题:平行四边形的面积

  二、平行四边形面积计算

  1.用数方格的方法计算面积。

  (1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

  说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。

  (2)独立完成。

  (3)汇报结果。

  (4)观察表格的数据,你发现了什么?

  通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  2.推导平行四边形面积计算公式。

  (1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?

  学生讨论,鼓励学生大胆发表意见。

  (2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

  请学生演示剪拼的过程及结果。

  教师用课件或教具演示剪—平移—拼的过程。

  (3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)

  小组汇报,教师归纳:

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

  这个长方形的长与平行四边形的底相等,

  这个长方形的宽与平行四边形的高相等,

  因为长方形的面积=长×宽,

  所以平行四边形的面积=底×高。

  3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

  4.出示例1。读题并理解题意。

  三、巩固和应用

  1、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等( )

  (2)平行四边形底越长,它的面积就越大( )

  2、计算。

  四、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  五、作业:练习十五第1、2题。

  六、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

  《平行四边形的面积》教学反思

  本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的.推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。

  一、重在每个孩子都参与

  本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

  二、渗透“转化”思想,让所积累的经验为新知服务

  “转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。

  虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!

平行四边形面积教案3

  教学内容:人教版五年级上册第87—88页

  教学目标:

  1.掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。

  2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。

  3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。

  教学重点:掌握平行四边形的面积计算公式,能运用公式解决实际问题。

  教学难点:理解平行四边形面积计算公式的推导方法与过程。

  教学准备:平行四边形、学习单等。

  教学过程:

  课前布置预习第87——88页内容,完成预习单(如下图)。

  一、创设情境,导入新课。

  1.课前交流与小故事

  师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?

  生紧张,激动……

  师:同学们,你们知道曹冲称象的故事吗?谁来说一说?

  生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。

  师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的`转化成简单的,今天我们也来学习关于转化的数学问题。

  师:同学们,看老师手上拿着的是什么图形呢?

  生:长方形

  师:对。长方形,那它的面积是指哪一部分呢?请一名学生上来指一指、画一画。它的面积计算公式呢?

  生:表面的大小,面积计算公式是长乘宽。

  师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢?

  生:平行四边形

  师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)

平行四边形面积教案4

  教学目的:

  1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。

  2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

  3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  4、培养学生自主学习的能力。

  教学重点:掌握平行四边形面积公式。

  教学难点:平行四边形面积公式的推导过程。

  教具、学具准备

  1、多媒体计算机及课件;

  2、投影仪;

  3、硬纸板做成的可拉动的长方形框架;

  4、每个学生5张平行四边形硬纸片及剪刀一把。

  教学过程():

  一、复习导入:

  1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

  2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

  3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

  二、质疑引新:

  1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

  2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

  3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

  4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习,平行四边形面积的.计算。(板书课题:平行四边形面积的计算)

  三、引导探求:

  (一)、复习铺垫:

  1、什么图形是平行四边形呢?

  2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

  3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

  (二)、推导公式:

  1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

  2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

  4、学生实验操作,教师巡视指导。

  5、学生交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、微机演示各种转化方法。

  6、归纳总结规律:

  沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶、剪样成的图形面积怎样计算?得出:

  因为:平行四边形的面积=长方形的面积=长×宽=底×高

  所以:平行四边形的面积=底×高

  (板书平行四边形面积推导过程)

  7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

  四、巩固练习:

  1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

  2、练习:

  (1)(微机显示例一)求平行四边形的面积

  (2)判断题(微机显示,强调高是底边上的高)

  (3)比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

  (4)思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

  五、问答总结:

  1、通过这节课的学习,你学到了哪些知识?

  2、平行四边形面积的计算公式是什么?

  3、平行四边形面积公式是如何推导得出的?

  六、课后作业:P67 1、2、3、5 《指导丛书》练习十六1

平行四边形面积教案5

  教学目标

  知识与技能:

  在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

  过程与方法:

  通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

  情感态度与价值观:

  通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

  教学重难点

  教学重点:

  掌握平行四边形的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学工具

  多媒体课件,平行四边形纸片,剪刀,学具袋

  教学过程

  教学过程设计

  1 、复习旧知

  请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)

  2 、情境引入

  (一)、故事激趣

  同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)

  (二)、学生思考、猜测

  学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积

  3、探究新知

  (一)利用方格,初步探究

  1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

  课件出示:比较两个图形的大小,然后引进格子图。

  师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)

  2、同桌交流方法

  3、生汇报想法

  4、通过数方格你发现了什么?

  生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等

  5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?

  如果,我用数方格的'方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?

  (二)动手操作,深入探究

  1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?

  2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

  师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。

  (板书:割补法)

  3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

  4、展示学生作品:不同的方法将平行四边形变成长方形。

  提问:观察拼出的长方形和原来的平行四边形,你发现了什么?

  平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

  引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S = ah

  (边说边板书)

  4 、学以致用

  (一)、课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

  (板书:S=ah=6×4=24㎡)

  (二)、课件出示练习题,学生独立完成。

  1、有一块地近似平行四边形,底43米,高20、1米,面积是多少平方米?

  2、填表

  3、判断:

  (1)平行四边形的底是7米,高是4米,面积是2 8米。()

  (2)a=5分米,h=2米,S=100平方分米。()

  4、下面对平行四边形面积的计算对吗?

  6×3=18(平方米)()

  5、下面对平行四边形面积的计算对吗?

  8×7=56(平方分米)()

  6、思考题:你有几种方法求下面图形的面积?

  课后小结

  回想一下刚才我们的学习过程,你有什么收获?

  计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推

  板书

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

平行四边形面积教案6

  教学内容:教科书第12—13页的例1、例2、例3,“试一试”和“练一练”,第14页的练习二。

  教学目标:

  1.知识目标:使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积公式,并能应用公式正确计算平行四边形的面积。

  2.能力目标:使学生经历观察、操作、测量、填表、讨论、分析、归纳等数学活动过程,进一步体会“等积变形”的思想方法。

  3.情感目标:培养空间观念,发展初步的推理能力。

  教学过程:

  一、复习导入。

  1.说出下面每个图形的名称。(电脑出示)

  2.在这几个图形中,你会求哪些图形的面积呢?

  3.大家想不想知道平行四边形的面积怎么求?今天我们一起来研究“平行四边形面积的计算”。(揭示课题)

  二、探究新知。

  1.教学例1。

  (1)出示例l中的第一组图形。

  提出要求:这儿有两个图形,这两个图形的面积相等吗?在小组里说一说你准备怎样比较这两个图形的面积。学生分组活动后组织交流。

  对学生的交流作适当点评,使学生明白两种不同的比较方法都是可以的:即数方格比较大小或把左边的图形转化后与右边的图形进行比较。

  (2)出示例l中的第二组图形。

  提出要求:你能用刚才的方法比较这两个图形的大小吗?

  学生分组活动后组织交流,在学生的交流中,教师适当强调“转化”的方法。

  (3)小结:把不熟悉的图形转化成学过的图形,并用学过的知识解决问题,这是数学上一种很重要的方法——转化。这种方法在数学学习中经常要用到。

  2.教学例2。

  (1)出示画在方格纸上的平行四边形。提问:你能想办法把图中的平行四边形转化成长方形吗?

  (2)学生操作,教师巡视指导。

  (3)学生交流操作情况。

  提出要求:谁愿意把你的转化方法说给大家听听?(让学生用实物投影演示剪、拼过程)

  提问:有没有不同的剪、拼方法?(继续请学生演示)

  教师用课件演示各种转化方法,进行小结。

  (4)讨论:刚才大家把平行四边形转化成长方形时,都是沿着平行四边形的`一条高剪的。大家为什么要沿着高剪开?

  启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。

  (5)小结:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。

  3.教学例3。

  (1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小有没有变?与原来的平行四边形之间有什么联系?

  (2)操作:请大家从教科书第123页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写下表:

  转化成的长方形平行四边形

  长(cm)宽(cm)面积(c㎡)底(cm)高(cm)面积(c㎡)

  (3)小组讨论:

  ①转化成的长方形与平行四边形面积相等吗?

  ②长方形的长和宽与平行四边形的底和高有什么关系?

  ③根据,长方形的面积公式,怎样求平行四边形的面积?

  (4)反馈、交流,抽象出面积公式。

  根据学生的讨论进行如.下的板书:

  因为长方形的面积二长×宽

  所以平行四边形的面积二底×高

  (5)用字母表示公式。

  如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你能用字母写出平行四边形的面积公式吗?

  结合学生的回答,板书:

  S=ah

  (6)指导完成“试一试”。

  先让学生根据题意独立解答,再通过指名板演和评点,明确应用公式求平行四边形面积一般要有两个条件,即底和高。

  三、巩固深化。

  1.指导完成“练一练”。先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。

  2.指导完成练习二第1题。

  (1)明确要求,鼓励学生尝试操作。

  (2)讨论:长方形的长、宽、面积各是多少?要使画出的平行四边形面积与长方形相等,它的底和高可以分别是多少?

  (3)学生继续操作后展示作品。引导学生对展示的平行四边形进行判断,是否符合题目的要求。

  3.指导完成练习二第2题。

  先让学生指出每个平行四边形的底和高,再让学生各自测量计算。

  提醒学生:测量的结果取整厘米数。

  4.指导完成练习二第3、4两题。

  先让学生独立解答,再通过交流说说自己解决问题的思路。

  5.指导完成练习二第5题。

  (1)同桌两人分别按要求做出长12厘米,宽7厘米的长方形。一个长方形不动,另一个长方形拉成平行四边形,平放在桌上。

  (2)指导观察、思考。

  要求学生认真观察做成的长方形和用长方形拉成的平行四边形,想一想,它们的周长相等吗?为什么?面积呢?

  (3)指导测量、计算,验证猜想。

  (4)连续拉动长方形,启发思考面积的变化有什么特点。

  四、全课小结。

  通过今天的学习活动,你学会了什么?有哪些收获?

  教学后记

  通过平移转化成长方形计算面积,使学生了解用数方格方法计算面积时不满整格的都按半格计算,同时初步学会用这方法估计并计算不规则物体表面的面积。使学生体会平移后图形的面积不变,感受转化的策略。体会平移后图形的面积不变。

平行四边形面积教案7

  教学目标设计:

  1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。

  2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。

  3、培养初步的推理能力和合作意识,以及解决实际问题的能力。

  教学重点:探究平行四边形的面积公式

  教学难点:理解平行四边形的面积计算公式的推导过程

  教学过程设计:

  一、创设情境,激发矛盾

  拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的。回答,适时板书:长方形面积=长×宽

  教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长

  学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。

  教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底

  边长×邻边长吗?

  今天这节课我们就来研究“平行四边形的`面积”。教师板书课题。

  学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?

  二、另辟蹊径,探究新知

  1、寻找根源,另辟蹊径

  教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?

  引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢?

  学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?

  2、适时引导,自主探索

  教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?

  (1)学生操作

  学生动手实践,寻求方法。

  学情预设:学生可能会有三种方法出现。

  第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开。

  第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。

  (2)观察比较

  刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?

  (3)课件演示

  是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。

  3、公式推导,形成模型

  既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?

  先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。

  A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?

  B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)

  学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  4、变化对比,加深理解

  引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?

  5、自学字母公式,体会作用

  请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的

  面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?

  三、实践应用

  1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)

  2、看图口述平行四边形的面积。

  3分米2.5厘米

  3、这个平行四边形的面积你会求吗?你是怎样想的?

  4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?

平行四边形面积教案8

  一、教学目标

  (一)知识与技能

  让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的.空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  通过活动,培养学生的探索精神,感受数学与生活的密切联系。

  二、教学重难点

  教学重点:探索并掌握平行四边形面积计算公式。

  教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

  四、教学过程

  (一)创设情境,激趣导入

  1.创设情境。

  (1)呈现教材第86页单元主题图。(PPT课件演示)

平行四边形面积教案9

  教学内容:

  人教版五年级上册教材P87~88例1及练习十九第1、2、3题。

  教材分析:

  《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面奠定基础,起到承上启下的作用。

  学情分析:

  学生虽然已经学习了长方形的面积计算方法和平行四边形的特征,但小学生的空间想象能力不够丰富,推导平行四边形面积计算公式有困难。因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成。

  教学目标:

  知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。

  过程与方法:让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。

  情感、态度与价值观:培养学生分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性,感受学习数学的乐趣。

  教学重点:

  探究平行四边形面积公式的推导过程,掌握平行四边形的面积的计算。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教学方法:

  迁移式、尝试、扶放式教学法

  教学准备:

  师:多媒体课件,练习纸。生:剪刀、直尺、平行四边形纸片若干个、练习本。

  教学过程:

  一、情境导入

  1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(生:长方形和平行四边形。)

  2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。

  3.提问:你会算它们的面积吗?

  生:我们以前学过长方形的面积计算,只要量出长和宽,用“长×宽”计算面积。(板书:长方形的面积=长×宽)

  师:非常好!那平行四边形的面积怎样计算呢?

  4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。(板书课题:平行四边形的面积)

  二、互动新授

  (一)利用方格,初步探究。

  1.想一想:我们可以用什么方法来计算平行四边形的面积呢?回想一下,以前学习长方形和正方形面积的时候,用过什么方法?

  生:我们以前学习长方形和正方形面积的时候,用的是数方格的方法。

  出示教材第87页方格图以及平行四边形和长方形。

  (引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算)

  2.同桌交流方法并完成教材87页的表格。

  3.汇报想法。谁愿意说说你数的方法?

  4.根据填表的结果进行讨论:你发现了什么?

  生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。

  5.小结:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。这是一种巧合吗?看来平行四边形和长方形存在着非常密切的联系。

  提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)

  6.引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?平行四边形的面积与什么有关呢?接下来我们一起探究。

  (二)动手操作,深入探究

  1.介绍材料,老师为每组准备了4个不同的平行四边形和学习卡,大家可以结合教材第88页平行四边形面积的推导过程,探究平行四边形的面积计算。

  2.活动要求:

  (1)画一画,剪一剪,拼一拼,把平行四边形转化成学过的什么图形。

  (2)观察转化后的图形和原来的平行四边形,有什么发现?(记录在学习卡上)。

  (3)尝试推导出平行四边形的面积公式。

  比一比,那个小组做得又快又好。

  3.汇报交流。

  让各小组展示不同的剪拼方法并说出剪拼过程。(多让几个学生上台展示)老师把不同剪拼方法粘贴在黑板上。

  质疑:你们为什么要沿高剪呢?

  生:因为沿平行四边形的一条高剪下,会出现直角,再平移到另一边才可以拼成长方形。

  4.课件演示剪拼过程。

  师:同学们做得又快又好,下面再次欣赏课件演示剪拼过程。

  运用生动形象的课件演示,介绍平行四边形的底和高,让学生再次体验平行四边形转化成长方形的过程,加深对图形转化的理解。

  5.引导学生小组思考讨论:

  (1)拼成的长方形和原来的'平行四边形比较,什么变了?什么没变?

  (2)拼成的长方形的长和宽与原来平行四边形的底和高分别有什么关系?

  (3)你能根据长方形的面积公式推导出平行四边形的面积公式吗?

  学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。

  6.引导学生利用长方形的面积公式推导出平行四边形的面积公式:因为长方形的面积=长×宽,所以平行四边形的面积=底×高(板书)

  追问:要求平行四边形的面积必须知道什么条件?

  学生得出结论:必须知道平行四边形的底和对应的高。

  7.教学用字母表示。

  师:翻开教材自学第88页倒数第二自然段的内容。

  师:你学到了什么?

  生:如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成S=ah(板书)

  8.课件演示,加深理解。

  9.小结:刚才同学们利用剪拼方法把平行四边形变成长方形,运用了一种很重要的数学思想方法——“转化”。这种方法在数学中运用很多,在后面学习三角形、梯形的面积也会用到,同学们表现真棒!学习了新知识我们就要运用它解决实际问题了,大家敢接受挑战吗?(生齐答:敢)请看题目。

  (三)应用公式,解决问题。

  出示教材第88页例1.

  学生读题,理解题意;独立完成;教师板书。

  三、巩固新知,拓展提升。

  1.计算出下面每个平行四边形的面积。

  4.快速填表。

  5.比较下列平行四边形的面积。引导学生发现:等底等高的平行四边形的面积相等。

  练习设计意图:练习设计由易到难,层层递进,题量虽然不多,但涵盖了这节课所有的知识点,具有一定的弹性,使不同的学生得到不同的发展,从而进一步内化了新知。

  四、回顾总结

  师:这节课你学会了什么,有哪些收获?

  五、布置作业:教材第89页练习十九第1、2、3题。

  板书设计:

  平行四边形的面积

  长方形的面积=长×宽S=ah

  ↑ ↑ ↑ =6×4

  平行四边的面积=底×高=24(m2)

  S=ah

平行四边形面积教案10

  一、所在班级情况,学生特点分析

  本校是一所比较偏僻的山村小学,本班有39名学生,全都是农民的子女。虽然现在农民的生活越来越好,但家长都希望自己的子女学到更多知识,将来有更大的发展,特别重视对学生的教育。因此,学生由于在社会、家庭、学校、教师的重视下,学习兴趣浓厚,能够认真学习,会主动学习,积极与他人合作,共同探索知识的形成过程。

  二、教学内容分析

  平行四边形面积的教学是在学生已经认识了平行四边形的特征以及长方形和正方形面积计算方法的基础上进行学习的,它同时又是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。

  三、教学目标

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过教学活动,激发学生学习兴趣,培养互助合作、交流、评价的意识,感受数学与生活的密切联系。

  四、教学难点分析

  把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。

  教材提示通过剪一个平行四边形纸片来研究如何求平行四边形的面积,而且提供了两种提示性的方法:一种是数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积。使学生在数、剪、拼的学习活动中,通过探索、合作、交流与指导,寻找解决问题的方法。

  五、教学课时

  一课时。

  六、教学过程

  (一)复习

  1、做一做,说一说。

  师:我们已经学习了平行四边形的一些知识,认识了平行四边形的底和高课前,老师要求自己动手,做两个平行四边形,现在拿出一个平行四边形,找出它的,划出它的高,量一量,并表示出来。

  学生做—教师巡视—同桌互相评价 —个别台前讲说。

  2、复习长方形面积计算公式

  我们学过长方形面积的计算公式,谁能说出长方形面积的计算

  公式?

  生:长方形面积=长×宽

  师:那么平行四边形的面积该怎么计算?这一节,我们就一起来研讨它。

  (板书课题)

  (二)推导平行四边形的面积公式

  1、数方格法:

  师:这儿有两个图形,请同学们比较它们的大小。

  出示课件(图1):

  要比较这两个图形的大小,就是比较它们的面积。我们先用数方格的方法数出它们各自的面积。

  教学活动:

  (1)数出平行四边形和长方形的面积各是多少?

  (2)平行四边形的底和高各是多少?

  (3)长方形的长和宽各是多少?

  (4)通过数方格,你发现了什么?

  (平行四边形的底与长方形的长相等,平行四边形的高与长方形的宽相等。)

  上面我们用数方格的方法得出平行四边形的面积,在实际的生活中,要求

  的平行四边形的面积很大时,比如,一块平行四边形的果园,用数方格的方法就难以解决了。因此,我们能不能把一个平行四边形转化为我们已经学过的某一种图形,从而得出平行四边形面积的计算方法呢?

  2、割补法:

  (1)学生用学具演示。

  师:同学们拿出另一个平行四边形,想一想,做一做,怎样才能把它转化成为一个长方形?

  教学活动:

  学生用学具做,同桌进行互相交流转化过程,边演示边述说,教师巡视指导。

  (2)教师用教具演示。

  同学们完成的真好,现在我们共同来演示怎样将一个平行四边形转化成一个长方形的呢?

  出示课件(图2)。

  教学活动:

  在演示过程中,应尊重学生的观点,教师进行适当引导,坚持以学生为主体,生生互动,师生互动的原则,激发学生的学习积极性。

  3、推导、归纳平行四边形的面积计算公式:

  把一个平行四边形转化成一个长方形,什么变了,什么没变?

  (形状变了,面积没有变。)

  也就是说拼成后长方形的面积和原平行四边形的面积相等。

  拼成后的长方形的长与平行四边形的底有什么关系?(相等)

  长方形的宽和原平行四边形的高有什么关系?(相等)

  在问答过程中,出示课件(图3)。

  师:拼成后的长方形的长与原平行四边形的底相等,长方形的宽与原平行四边形的'高相等,它门的面积也相等。我们知道长方形的面积是长乘宽,谁能说出平行四边形的面积怎样求?(平行四边形的面积等于底乘高。)

  板书:平行四边形的面积=底×高

  请看课件(图4):

  如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形面积的字母公式该怎样表示呢?

  学生口述,教师板书:

  S=a×h

  师:一般含有字母的式子里,乘号可以用“·”表示,读作a乘h,板书:

  S=a·h

  也可以把乘号省略不写,板书:

  S=ah

  学习活动:

  将上面公式请同桌同学互相说说。

  (通过同学相互述说,既弄清了平行四边形的面积、底、高之间的关系,又培养了学生的口头表达能力。)

  要计算平行四边形的面积,必须知道几个条件,是什么?

  (两个条件,底和高。)

  七、课堂练习

  1、运用公式,尝试学习。

  师:请同学们打开课本24页,看“试一试”题目:

  出示课件(图5)。

  (在学生独立完成之后,与同学们说说各自的想法、做法,征求同学们的意见。)

  2、巩固练习,拓展学习。

  (1)选择正确的答案。

  出示课件(图6)。

  师:在上面A、 B、 C三个平行四边形中哪一个的面积是:2×3=6(平方厘米),并说出理由。

  (A:错误,因为3和2是两条邻边,不是对应的底和高;

  (B:错误,因为底3和高2不对应,也就是说高2不是底边3上的高;

  (C:正确。

  (通过练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。)

  3、操作观察,探究学习。

  出示课件(图7)。

  如上图,分别计算图中每个平行四边形的面积,你发现了什么?(单位:㎝)

  (引导学生通过计算、观察、比较等,发现平行四边形底和高相等时面积也一

  定相等。)

  讨论:

  当两个平行四边形的面积相等时,它们的底与高是否也相等?

  (平行四边形的面积相等,底与高却不一定相等。)

  八、作业安排

  课本24页“练一练”,第3题、4题。

  九、附录(教学课件)

  十、教学反思

  平行四边形的面积是北师大版五年级数学上册第二单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式。因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。

  课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是不尽人意的。

平行四边形面积教案11

  教学内容:

  课本第73-74页练习十七第4-9题

  教学要求:

  1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

  2、养成良好的审题习惯,树立责任感。

  教学重点:

  能比较熟练地运用平行四边形的计算公式,解答有关的应用题。

  教具准备:

  口算卡片。

  教学过程:

  一、复习

  1、平行四边形的面积计算公式是什么?

  2、口算:

  4.9÷0.75.4+2.64×0.250.87-0.49

  530+2703.5×0.2542-986÷12

  3、求平行四边形的面积。

  (1)底12米,高是7米;

  (2)高13分米,底长6分米;

  (3)底2.5厘米,高4厘米;

  (4)底0.24分米,高0.5分米

  4、出示课题。

  二、新授

  1、补充例题

  一块平行四边形的麦地底长125米,高24米,它的.面积是多少平方米?

  (1)独立列式后,指名口述,教师板书。

  (2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

  让学生议一议,然后自己列式解答,最后评讲。

  (3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?

  与上题比较,从数量关系上看,什么是相同的?什么是不同的?

  让学生自己列式。

  辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

  A900×(125×24÷10000)

  B900÷(125×24)

  C900÷(125×24÷10000)

  2、(略)

  三、巩固练习

  练习十七第6、7题

  四、课堂作业

  练习十七第8、9题

  ⑧有一块平行四边形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?

  ⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?

  板书设计:

  平行四边形面积的计算

【平行四边形面积教案】相关文章:

《平行四边形的面积》教案01-02

平行四边形面积 教案12-17

教案-平行四边形的面积12-17

平行四边形的面积的计算教案12-16

数学《平行四边形的面积》教案02-14

平行四边形面积计算的练习 教案12-16

平行四边形面积--自写教案12-16

数学教案-平行四边形的面积09-29

小学数学《平行四边形的面积》教案02-11