初中数学分式教案

时间:2022-12-31 10:04:23 其它教案 我要投稿
  • 相关推荐

初中数学分式教案

  作为一位杰出的老师,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。如何把教案做到重点突出呢?下面是小编为大家收集的初中数学分式教案,希望能够帮助到大家。

初中数学分式教案

初中数学分式教案1

  分式(2课时)

  上课时间 年 月 日星期

  一、复习要点

  1、分式的通分和约分

  2、分式的定义域

  3、分式的化简和求值

  二、复习过程

  1、求代数式的值:①化 ②代 ③算

  例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

  ②已知a=-1,b=-3,c=1,求 a2b--3abc

  ③已知a= 求 ÷( - )+

  ④已知x= y= ,求 +

  2、分式的通分和约分

  (1)通分最简公分母:小;高

  (2)约分:注: 与 和

  3、分式的定义域

  ①分式 (1)何时有意义(2)何时无意义(3)何时值为0

  4、分式的化简和求值

  ①1- ÷ +

  其他例题见复习用书13页5(6、7、8、)6

  三、小结 1、分式的通分和约分

  2、分式的定义域

  3、分式的化简和求值

  四、练习:略

  五、作业:

  见复习用书

  分式(2课时)

  上课时间 年 月 日星期

  一、复习要点

  1、分式的通分和约分

  2、分式的定义域

  3、分式的.化简和求值

  二、复习过程

  1、求代数式的值:①化 ②代 ③算

  例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

  ②已知a=-1,b=-3,c=1,求 a2b--3abc

  ③已知a= 求 ÷( - )+

  ④已知x= y= ,求 +

  2、分式的通分和约分

  (1)通分最简公分母:小;高

  (2)约分:注: 与 和

  3、分式的定义域

  ①分式 (1)何时有意义(2)何时无意义(3)何时值为0

  4、分式的化简和求值

  ①1- ÷ +

  其他例题见复习用书13页5(6、7、8、)6

  三、小结 1、分式的通分和约分

  2、分式的定义域

  3、分式的化简和求值

  四、练习:略

  五、作业:

  见复习用书

初中数学分式教案2

  第一课时

  一、教学过程

  【复习提问】

  1.分式的基本性质?

  2.分式的变号法则?

  【新课】

  数学小笑话:(配上漫画插图幻灯片)

  从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”

  问:这个富家子弟为什么会犯这样的错误?

  分数约分的方法及依据是什么?

  1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?

  学生分组讨论,最终达成共识.

  2.教师小结:

  (1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.

  (2)分式约分的依据:分式的基本性质.

  (3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.

  (4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.

  3.例题与练习:

  例1约分:

  (1);

  请学生观察思考:①有没有公因式?②公因式是什么?

  解:.

  小结:①分式的分子、分母都是几个因式的积的.形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.

  (2);

  请学生分析如何约分.

  解:.

  小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.

  (3);

  解:原式.

  (4);

  解:原式

  .

  (5);

  解:原式.

  例2?化简求值:

  .其中,.

  分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件.

  解:原式.

  当,时.

  .

  二、随堂练习

  教材P65练习1、2.

  三、总结、扩展

  1.约分的依据是分式的基本性质.

  2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.

  3.若分式的分子、分母中有多项式,则要先分解因式,再约分.

  四、布置作业

  教材P73中2、3.

初中数学分式教案3

  教学目标

  1.通过实践总结分式 的乘 除法,并能较熟练地进行式的乘除法 运算.

  2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘 方运算

  3.引 导学生通过分析、归纳,培养学生用类比的 方法探索新知识的能力

  教学重点 分式的乘除法、乘方运算

  教学难点 分式的乘除法、混合运算,分式乘法,除法 、乘方运算中符号的确定.

  教学过程

(一)复习与情境导入

  1.(1)什么叫做分式的约分?约分的根据是什么?

  (2):下列各式是否正确?为什么?

  2.(1)回忆:

  计算:

  (2)尝试探究:计算:

  (1) ; (2) .

  概括 :分式的乘除法用式子表示即 抢答

  尝试 探究用式子表示,用文字表达.培养学生的合情推理能力.

  (二)实践与探索 1

  例2计算

  分析:①本题是几个分式在进行什么运算?

  ②每个分式的分子 和分母都是什么代数式?

  ③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?

  ④怎样应用分式 乘法法则得到积的分式?

  解 原式= = .

  练习:①课本练习1.

  ②计 算:

  (三)实践与探索2

  探索分式的乘方的法则1.思 考

  我们都学过了有理数的乘方,那么分式的乘 方该是怎样运算的.呢?

  先做下面的乘法:(1) = =( )3;

  (2) = =( )k.

  2.仔细观察这两题的结果,你能发现什么 规律?与同伴交流一下,然后完成下面的填 空: )(k) =___________(k是正整数)

  老师应格外强调符 号问题 自主探究,后合作交流学习探索分式的乘方的法则

  (四)小结与作业 怎样进 行分式 的乘除法?怎样进行分式的乘方?

  作业:

  (五)板书设计

初中数学分式教案4

  学习目标

  1、了解分式的概念,会判断一个代数式是否是分式。

  2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。

  3、能分析出一个简单分式有、无意义的条件。

  4、会根据已知条件求分式的值。

  学习重点

  分式的概念,掌握分式有意义的条件

  学习难点

  分式有、无意义的条件

  教学流程

  预习导航

  一、创设情境:

  京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:

  (1)货运列车从北京到上海需要多长时间?

  (2)快速列车从北京到上海需要多长时间?

  (3)已知从北京到上海快速列车比货运列车少用多少时间?

  观察刚才你们所列的式子,它们有什么特点?

  这些式子与分数有什么相同和不同之处?

  合作探究

  一、概念探究:

  1、列出下列式子:

  (1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是

  (2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是 元。

  (3)正n边形的每个内角为 度。

  (4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花 ______㎏。

  2、两个数相除可以把它们的商表示成分数的形式。如果用字母 分别表示分数的分子和分母,那么 可以表示成什么形式呢?

  3、思考:

  上面所列各式有什么共同特点?

  (通过对以上几个实际问题的研讨,学会用 的形式表示实际问题中数量之间的关系,感受把分数推广到分式的.优越性和必要性)

  分式的概念:

  4、小结分式的概念中应注意的问题.

  ① 分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;

  ② 分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;

  ③ 如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的条件。

  二、例题分析:

  例1 : 试解释分式 所表示的实际意义

  例2:求分式 的值 ①a=3 ②a=—

  例3:当取什么值时,分式 (1)没有意义?(2)有意义?(3)值为零。

  三、展示交流:

  1、在 ____________中,是整式的有_____________________,是分式的有________________;

  2、 写成分式为____________,且当m≠_____时分式有意义;

  3、当x_______时,分式 无意义,当x______时,分式的值为1。

  4、 若分式 的值为正数,则x的取值应是 ( )

  A. , B. C. D. 为任意实数

  四、提炼总结:

  1、什么叫分式?

  2、分式什么时候有意义?怎样求分式的值

【初中数学分式教案】相关文章:

「数学教案」分式的加减12-17

分式教案设计01-04

《分式的乘除法》教案12-16

分式和分式方程11-04

初中数学 教案02-24

数学初中教案11-06

初中数学教育教案03-31

初中数学《圆 》教案12-30

初中数学矩形教案12-30