《分数与除法》教学设计与反思

时间:2022-12-25 09:11:22 教学反思 我要投稿
  • 相关推荐

《分数与除法》教学设计与反思(通用7篇)

  在我们平凡的日常里,我们需要很强的课堂教学能力,反思过往之事,活在当下之时。怎样写反思才更能起到其作用呢?下面是小编为大家整理的《分数与除法》教学设计与反思,希望对大家有所帮助。

《分数与除法》教学设计与反思(通用7篇)

  《分数与除法》教学设计与反思 篇1

  学情分析:

  五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。

  教学内容分析:

  《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把 4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

  教学目标:

  1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

  2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

  3、能够运用分数除以整数的方法解决简单的实际问题。

  教学重点:

  引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

  教学难点:

  1、探索分数除以整数的计算方法。

  2、能够运用分数除以整数的方法解决简单的实际问题。

  教学方法:

  导学教学法

  创新理念:

  “有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。

  教具准备:

  长方形纸、课件。

  教学流程:

  一、 创设情境 提出问题

  (1) 把一张纸的 4/7平均分成2份,每份是这张纸的几分之几?

  (2) 把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?

  【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。】

  二、 自主探究 小组交流

  (教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)

  自主学习提示

  1. 利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。

  2. 同桌之间说一说彼此的想法。

  3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。

  【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】

  三 交流释疑

  1、 初步感知分数除法

  把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?

  请同学们拿出图(一)来涂一涂。

  交流:为什么要这样涂,每份是这张纸的几分之几呢?

  还有不同的涂法吗?

  能根据这个过程列出一个除法算式吗?

  这个除法算式和以前学的除法有什么不同?

  这就是这节课我们要学习的分数除法。(板书)

  【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】

  2、 初探算法

  把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?

  请大家在图(二)的上面涂一涂。

  交流:(展示学生不同的涂法)

  同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。 谁能根据这一过程列出一个算式。

  怎样才能算出得数呢?

  (师提问:计算时为什么要用 × 1/3?)

  观察3和1/3 有什么关系,由除以3变成乘3的倒数 ,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。

  (教师出示三组算式)

  1/3÷5 4/5÷31/3÷5

  指生口算。

  让学生观察每一组算式,说一说发现了什么?

  根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?

  (学生口述算法后)

  【设计意图:分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】

  四、实践应用

  1、算一算

  9/10÷3015/16÷20xx/15÷21 8/9÷6 5/6÷15

  2、填一填

  师:学会了知识就要灵活的运用,这道题你们能填上吗?

  学生独立在书上第26页填一填,想一想。

  集体订正。

  3、解决问题。

  师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?

  学生在练习本上列式解答。

  指生汇报完成情况。

  运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的'问题,让大家解决。

  (指生口头编题,其他学生解决)

  【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】

  五、课堂总结

  学生谈一谈本节课的收获。

  同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。

  六、布置作业:

  22页练一练

  七.板书设计:

  分数除法(一)

  ——分数除以整数

  分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。

  (1)4/7÷2 (2) 4/7÷3

  =4 /7×1/2

  =2/7

  教学反思:

  《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:

  一、充分利用学生最佳的学习状态

  课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。

  二、让学生在不同的活动中探索数学。

  数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。

  三、让学生在不同层次的练习中应用数学。

  学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。

  《分数与除法》教学设计与反思 篇2

  一、教学内容:

  分数与除法,教材第65、66页例1和例2

  二、教学目标:

  1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  三、重点难点:

  1.理解、归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  四、教具准备:

  圆片、多媒体课件。

  五、教学过程:

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

  (三)教学实施

  1.学习教材第65 页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  ( 3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。

  老师根据学生回答。(板书:1 ÷ 3 =3(1)块)

  (4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?

  2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3.学习例2 。

  ( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。

  方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  ( 3 )加深理解。(课件演示)

  老师:4(3)块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。

  ②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。

  现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

  ( 4 )巩固理解

  ① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)

  ②刚才大家都是拿学具亲自操作的',如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))

  4.归纳分数与除法的关系。

  ( l )观察讨论。

  请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  ( 2 )思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  ( 3 )用字母表示分数与除法的关系。

  老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5.巩固练习:

  (1)口答:

  ①7÷13=( )(( )) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=( )(( )) 0.5÷3=3(0.5) n÷m=( )(( ))(m≠0)

  ②1米的8(3)等于3米的( )

  ③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的10(1) ( )

  ②1米的4(3)与3米的4(1)一样长。( )

  ③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )

  ④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。( )(3)动脑筋想一想

  ①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  《分数与除法》教学设计与反思 篇3

  教材分析:

  本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、 谈话激趣,复习辅垫

  1. 师生交流

  师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

  对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

  师:老师查到了一些资料,我们一起来看一下。(课件出示)

  2.复习旧知

  师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

  学生回答后说明理由。

  师:算一算你们自己体内水分的质量吧!

  生答

  师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

  生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量

  35× 5 (4 )=28(千克)

  师:谁还能根据另一个信息写出等量关系式?

  成人的体重× 3 (2 )=成人体内的水分的重量

  2. 揭示课题

  师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

  二、 引导探究,解决问题

  1. 课件出示例题。

  2. 合作探究

  师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

  3. 学生汇报

  生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

  生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。

  28÷ 5 (4 )=35(千克)

  4. 比较算法

  比较算术做法与方程做法的优缺点?

  (让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

  5. 对比小结

  和前面复习题进行比较一下,看看这题和复习题有什么异同?

  (1) 看作单位“1”的数量相同,数量关系式相同。

  (2) 复习题单位“1”的量已知,用乘法计算;

  例1单位“1”的量未知, 可以用方程解答。

  (3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

  6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?

  问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

  单位“1”是已知还是未知的?

  根据学生回答画线段图。

  根据题中的数量关系找学生列出等量关系式。

  学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

  师:这道题你还能用其它方法解答吗?

  (根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

  三、 联系实际,巩固提高

  1. (投影)看图口头列式,并用一句话概括题中的等量关系。

  (1)

  (2)

  2.练一练:

  (1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?

  (2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?

  3.对比练习

  (1)一条路50千米,修了 5 (2 ),修了多少千米?

  (2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?

  (3)一条路50千米,修了 5 (2 )千米,还剩多少千米?

  四、全课小结畅谈收获

  ①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

  教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

  设计意图:

  一、从生活入手学数学。

  《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的.数学。

  二、关注过程,让学生获得亲身体验。

  教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  四、 有破度有层次地设计练习,提高学生的思维能力。

  教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

  《分数与除法》教学设计与反思 篇4

  教学内容:

  教材第65、66页例1和例2。

  教学目标:

  1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  教学重难点:

  1.理解、归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  3.理解分数的两种意义。

  教具准备:

  圆片。

  教学过程:

  一、旧知铺垫。

  1.表求什么意思?它的分数单位是什么?它有几个这样的分数单位?

  2. 7个是( ) 是( )个

  3个是( ) 是( )个

  3. 把6块饼平均分给3人,每人得多少块?师:怎样列式?

  板书:每份数=总数÷总份数

  二、教学实施

  1 .学习教材第65 页的例1 。

  把练习3改成“把1块饼平均分给3人,每人得多少块?”就成课本的例1。

  (l)请学生读题。列式。

  师:为什么用除法?结果是多少?

  (2)分组操作、讨论、汇报。

  生1:就是把1 个蛋糕看成单位“1 " ,把单位“1 ”平均分成三份,表示这样一份的数,可以用分数来表示, 1 块的就是块。

  根据学生回答。(板书:1 ÷ 3 = )

  师:从图中可以看出1 ÷ 3 和都表示阴影部分这一块,所以1÷3=

  2.学习例2 。

  (1)板书例题:“把3块饼平均分给4人,每人得多少块?”

  (2)指名读题,理解题意并列出算式。板书:3 ÷ 4

  师:3 ÷ 4 的计算结果用分数表示是多少?

  请同学们用圆片分一分。

  师:根据题意,我们可以把什么看作单位“1 " ? (把3 块月饼看作单位“1 ”。)把它平均分成4 份,每份是多少,你想怎样分?

  请同学到演示分的过程。

  学生有两种分法。

  方法一:可以1 个1 个地分,先把1 块月饼平均分成4 份,得到4 个,3 块月饼共得到,12个, 平均分给4 个学生。每个学生分得3个,合在一起是块月饼。

  师根据学生回答板书:3块月饼的就是块。

  方法二:可以把3 块月饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块月饼,所以两人分得块。

  师相应板书:1块月饼的就是块。

  (3)理解。

  师:块饼表示什么意思?

  (4)练习。

  说说下面分数的两种意义。

  3. 归纳分数与除法的关系。

  (l)观察讨论。

  请学生观察 :1 ÷ 3 = 3 ÷ 4 =

  讨论除法和分数有怎样的.关系?

  学生充分讨论后,老师引导学生归纳出:

  被除数相当于分子,除数相当于分母,除号相当于分数中的分数线。

  用文字表示是:被除数÷除数=

  师讲述:分数是一种数,除法是一种运算。

  (2)思考。

  在被除数÷除数= 这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  (3)用字母表示分数与除法的关系。

  师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  三、总结提高。

  师:这节课我们学习了分数与除法的关系,你理解了什么?

  四、巩固练习。

  1. 7÷8= 3÷7= 14÷5=

  =( )÷( ) = ( )÷( )

  2.米表示( )米的,也可以表示5米的( )。

  教学反思:

  分数与除法的关系,本组在第8周进行了“同课异构”活动,收获多多。

  这一内容,不是简单的了解分数与除法的关系。教材安排了两道例题,仔细研读教材与教师用书,例1是根据除法的含义,列出除法算式,根据分数的意义,直接说出结果,把除法意义与分数联系起来。例2例出算式很容易,但得出计算结果,理解不容易,因此教材安排了一组图,让学生通过动手,通过操作、分一分、剪一剪、拼一拼,理解计算结果。

  前几天学习的分数都表示谁占谁的几分之几(即分率),可今天求的却是具体数量。教学例2时,虽然运用学具让所有学生参与到知识的探索,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:

  1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是?

  2、通过操作,结果明明是将单位“1”平均分成12块,取出其中的3块,为什么不能用 块表示呢?

  针对上述两个问题,我在教学中主要采取了以下一些策略:

  1.复习环节巧铺垫。

  在复习导入中增加一道填空的练习。3个是( ), 是( )个。

  2.审题过程藏玄机。

  在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。

  通过上述改进措施,学生理解相对容易一些。

  教学“3块的”和“1块的”时。为了让学生更直观,要求学生通过画一画、涂一涂,拼一拼,让学生充分感悟到实际都是“1块的”。

  《分数与除法》教学设计与反思 篇5

  教学目标

  1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

  3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

  教学重难点

  理解分数与除法的关系

  教学准备

  每人准备4张同样大小的圆片

  教学过程

  一、引入情境,揭示例题

  口答题

  1、把8块饼干平均分给4个小朋友,每人分得几块?

  2、把4块饼干平均分给4个小朋友,每人分得几块?

  3、把3块饼干平均分给4个小朋友,每人分得几块?

  怎样列式?板书3÷4

  引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

  不满1块那该怎么表示呢?

  生:小数或分数

  二、实践操作探索研究

  师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

  学生动手操作

  教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

  师:接下来我们请同学汇报一下他们研究所得结果。

  (生讲述这样分的理由)

  教师总结:

  (1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

  (2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

  总结:把3块饼干平均分给4个小朋友,每人分得3/4块

  板书:3÷4=3/4(块)

  师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

  学生口述理由。板书:3÷5

  师:想想该怎么去分?把你的想法和同桌交流下。

  指名让学生说说思考过程。

  板书:3÷5=3/5(块)

  师:如果分给7个小朋友呢?

  学生口述3÷7=3/7(块)

  三、归纳总结,围绕主题

  师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的.内容。

  板书课题:分数与除法的关系

  生相互交流。教师板书:被除数÷除数=

  师:除法算式又可以写成什么形式?

  生补充:被除数÷除数=被除数/除数

  师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

  生:a÷b=a/b

  师:这里的a和b可以取任何数吗?为什么?

  生:除数不能为0。

  师:分数和除法之间的关系,你有什么好的方法记住它们吗?

  生交流讨论并回答

  师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

  四、巩固练习,拓展延伸

  师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

  集体校对。

  师引导:比较上下两行有什么不同?

  在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

  师:接下来请大家独立完成“试一试”两小题。

  然后小组交流你是怎么想的?

  师:把7分米改写成用米作单位,可以列怎样的除法算式?

  生:7÷10=7/10(米)

  师:第二个呢?

  生:23÷60=23/60(时)

  师:独立完成“练一练”的第二题

  集体讲评校对。

  师:完成“练习八”的第一题口答

  师:完成“练习八”的第三题

  学生在书本上完成,

  教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

  五、课堂作业

  完成“练习八”的第二题

  教后反思:

  本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。<

  《分数与除法》教学设计与反思 篇6

  教学内容:

  分数与除法的关系

  教学目标:

  1、使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

  2、运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数,并学会解答“求一个数是另一个数的几分之几”的应用题。

  教学过程:

  一、复习

  1、说说下面各分数的意义,分数单位,以及有几个这样的分数单位。

  2、看句子说把( )看作单位“1”,平均分成( )分,( )占其中的( )份。

  二、教学应用题

  例2把1米长的钢管平均截成6段,每段长多少米?

  分析:求每段长多少米,就是求每份数

  列式:1÷6=1/6(米)

  根据分数的意义,把一米长的钢管看作单位“1”,平均分成6份,表示这样1份的数

  二、引入新课

  1、分数与除法有什么关系?

  2、教学例3

  把3只月饼平均分成4份,每份是多少只?

  分析:(1)每份是多少?就是计算3÷4得多少

  (2)图示,把3只月饼平均分成4份,每人得到的1份,是3只月饼的1/4,也就是一只月饼的3/4。

  因此:3÷4=3/4(只)

  3、找一找

  (1)分数与除法的关系

  两个自然数相除,它们的商可以用分数表示。

  被除数÷除数=被除数/除数

  (2)想一想,分数的分母能是0吗,为什么?

  三、巩固练习

  例4五年级同学参加登山活动,男同学有36人,女同学有9人

  (1)男同学人数是女同学的几倍?

  (2)女同学人数是男同学的`几分之几?

  分析:男同学人数是女同学的几倍,是以女同学人数为标准,就是求36里面有几个9,用除法计算36/9。女同学人数是男同学的几分之几,是以男同学人数为标准,就是求9是36的几分之几,也用除法计算9/36。

  答:男同学人数是女同学的4倍。

  女同学人数是男同学的9/36。

  四、总结归纳

  1、求一个数是另一个数的几分之几,用除法计算的道理。

  2、让学生应用求一个数是另一个数的算理。

  五、布置作业

  反思:

  这节课的重点是分数与除法的关系。学生比较容易理解表象,记住分数与除法的关系。但对于深层意义的理解比较困难。教师应采用多种教学手段,在学生自己总结的基础上来掌握概念。可能效果会更好些。在教学谁是谁的几分之几的时候,对于如何列式子的指导应该从谁是谁的几倍这个知识点着手来教学比较妥当。

  《分数与除法》教学设计与反思 篇7

  教学内容:

  五年级下册教科书第65—66页。

  教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  教材分析:

  《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。

  本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

  教具学具:

  课件,模型。

  教学设计

  一、导入

  师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

  生:月饼。

  师:你们的课外知识真丰富,你们喜欢吃月饼吗?

  生:喜欢。

  师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

  生:2块,6÷3=2(块)。(板书)

  师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

  生:0.5块,1÷2=0.5(块)。(板书)

  师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

  师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

  生:七分之五。

  师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

  生:可以用分数表示。

  师:在表示整数除法的商时,用谁作分母?用谁做分子?

  生:用被除数作分子,除数作分母。

  师:那么分数与除法有什么样的关系呢?谁能用语言概括下?

  生:被除数除以除数等于除数分之被除数。

  师:你表达得这么清晰流畅,了不起!

  师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

  生:a÷b= a/b(b≠0)(板书)

  师:这个关系式里每个数的范围要注意什么?

  生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

  师:想一想分数与除法有哪些联系和区别?

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)

  二、巩固练习

  师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

  1.1.用分数表示下面各式的商。

  (1)3÷2 =( )

  (2)2÷9 =( )

  (3)7÷8 =( )

  (4)5÷12 =( )

  (5)31÷5 =( )

  (6)m÷n =( )n≠0

  2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

  的( )是相等的

  三、课堂小结

  说说你的收获是什么?重点说说分数与除法的关系。

  结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

  四、作业布置

  练习十二第1,3题。

  板书设计

  分数与除法

  被除数÷除数=被除数/除数

  a÷b= a/b(b≠0)

  教学反思

  这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的.意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

【《分数与除法》教学设计与反思】相关文章:

分数除法教学反思04-05

《分数与除法》教学反思04-11

分数与除法教学反思04-11

分数除法的教学反思10-12

《分数除法三》教学反思04-11

《分数与除法的关系》教学反思04-05

分数除法数学教学反思11-05

《分数除法》教学反思(精选14篇)10-03

分数除法应用题教学反思12-29