对数函数教案学案一体化

时间:2023-04-25 06:18:32 教案 我要投稿
  • 相关推荐

对数函数教案学案一体化

课题:高中数学必修(1) 2.2.2对数函数(二) 【教学任务】: (1)进一步理解对数函数的图象和性质; (2)熟练应用对数函数的图象和性质,解决一些综合问题; (3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力. 【教学重点】:对数函数的图象和性质. 【教学难点】:对对数函数的性质的综合运用. 【教学过程】: 一、回顾与总结 1 1、函数 的图象如图所示,回答下列问题.     2 (1)说明哪个函数对应于哪个图象,并解释为什么?     3 (2)函数 与   且 有什么关系?图象之间  又有什么特殊的关系? (3)以 的图象为基础,在同一坐标系中画出 的图象. (4)已知函数 的图象,则底数之间的关系: .     1   2   3   4 完成下表(对数函数 且 的图象和性质)         图 象     定义域     值域     性 质     2、根据对数函数的图象和性质填空. 1 已知函数 ,则当 时, ;当 时, ;当 时, ;当 时,   . 1 已知函数 ,则当 时, ;当 时, ;当 时, ;当 时,   ;当 时,   . 二、应用举例 例1.  比较大小:1 , 且 ; 2 , . 解: 例2.已知 恒为正数,求 的取值范围. 解:   [总结点评]:(由学生独立思考,师生共同归纳概括).     . 例3.求函数 的定义域及值域. 解:   注意:函数值域的求法.   例4.(1)函数 在[2,4]上的最大值比最小值大1,求 的值; (2)求函数 的最小值. 解:   注意:利用函数单调性求函数最值的方法,复合函数最值的求法.   例5.(2003年上海高考题)已知函数 ,求函数 的定义域,并讨论它的奇偶性和单调性. 解:   注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤.   例6.求函数 的单调区间. 解:   注意:复合函数单调性的求法及规律:“同增异减”. 练习:求函数 的单调区间. 三、课堂小结: 本小节的目的是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点.(引导学生自主归纳,教师点拨完善)   四、作业布置 1、必做题:教材   A组   ※基础达标 1.函数 的图象关于(  ).   A. y轴对称 B. x轴对称  C. 原点对称  D. 直线y=x对称 2.函数 的值域是(  ).   A.  R  B. C.  D. 3.(07年全国卷.文理8)设 ,函数 在区间 上的最大值与最小值之差为 ,则 (  ).   0 x C1 C2 C4 C3 1 y   A. B.  2 C. D.  4   4.图中的曲线是 的图象,已知 的值为 , , , ,则相应曲线 的 依次为(  ).   A. , , ,   B., , ,   C. , , ,   D., , , 5.下列函数中,在 上为增函数的是(  ).   A. B. C. D. 6. 函数 是 函数. (填“奇”、“偶”或“非奇非偶”) 7.函数 的反函数的图象过点 ,则a的值为   . ※能力提高 8.已知 ,讨论 的单调性.               9.我们知道,人们对声音有不同的感觉,这与它的强度有关系. 声音的强度I用瓦/平方米( )表示. 但在实际测量中,常用声音的强度水平 表示,它们满足以下公式:  (单位为分贝), ,其中 ,这是人们平均能听到的最小强度,是听觉的开端. 回答以下问题: (1)树叶沙沙声的强度是 ,耳语的强度是 ,恬静的无限电广播的强度为 . 试分别求出它们的强度水平. (2)在某一新建的安静小区规定:小区内的公共场所声音的强度水平必须保持在50分贝以下,试求声音强度I的范围为多少?                 ※探究创新 10. 已知函数 其中 .(1)求函数 的定义域;  (2)判断 的奇偶性,并说明理由;(3)求使 成立的 的集合.

【对数函数教案学案一体化】相关文章:

《对数函数》教案03-01

教学案一体化反思04-28

教学案一体化实验回顾04-28

高一数学对数函数教案09-28

教案与导学案的区别12-05

《海燕》教案学案(精选13篇)01-07

《对数与对数函数》反思03-10

对数函数教学反思04-02

幼儿中班教学案例云朵面包教案01-21

《秋天》导学案12-17