「教案」零点二分法-佳漫

时间:2023-04-25 06:13:08 教案 我要投稿
  • 相关推荐

「教案」零点二分法-佳漫

广州四中公开课试验课教案(一) 科目 数学 时间 10月13号 主讲教师   职称   班级   课题 函数的零点与二分法 课型 传统讲授型 目的要求 1、知识与技能:由观察几个具体的方程与相应函数的图像,发现方程的根与函数的零点之间的关系,培养学生观察和发现的能力,以及从特殊到一般的方法,从而了解函数的零点与方程根的联系,形成函数零点的概念及零点存在的判定方法。 2、过程与方法:在应用函数研究方程的过程中,体会函数与方程思想,数形结合思想以及化归思想;把从特殊函数零点存在的判定方法上升到一般函数,体现了从特殊到一般的研究方法。 3、情感态度价值观:在求解方程根的“山穷水尽”,到利用二分法研究函数零点的“柳暗花明”,学生了解数学的发展史,感受探究的乐趣。 重点难点 1、重点:函数零点的概念,方程的根与函数零点之间的联系,用函数的方法求解方程的根;零点存在定理的发现;用二分法求解方程的近似解。 2、难点:用函数的方法求解方程的根;零点存在定理的发现与准确理解。 教法 学法 教法:传统的讲授法与观察探索法相结合 学法:探究问题—解决问题的合作学习方式 手段 运用 传统的板书教学为主,多媒体教学为辅 进度 安排 一个课时   课堂教学实施设计  1、函数零点的概念 我们先给出函数零点的概念。 对于函数f(x) ,我们把使 f(x)=0成立的实数x叫做函数 的零点。 2、例:求零点 (1) (2) (3) 注:(1)函数零点是一个实数,当函数的自变量取这个实数时,其函数值等于零,零点不是一个点坐标; (2)函数的零点也就是函数 图象与x轴交点的横坐标; (3)求零点就是求方程 的实数根。 这样,函数 的零点就是方程 的实数根,也就是函数 的图象与x轴交点的横坐标。 3、方程的根与函数的零点    有了函数零点的概念,以及明白了函数零点表示的意思,重新表述上面的结论,我们有: ①方程的不同实数根的个数=函数的零点个数(=函数的图像与横轴的交点个数); ②方程的实数根(值)=函数的零点(值)(=函数的图像与横轴的交点的横坐标(值)); 例题:P79(11) 4、零点存在性的探索 用连续不断的几条曲线连接如图4  A、B两点,观察所画曲线与直线l的相交情况,由两个学生上台板书:   .A  a  b 0 l .B 图4   两个学生画出连接A、B两点的几条曲线后发现这些曲线必与直线l相交。再 用连续不断的几条函数曲线连接如图A、B两点,观察所画曲线与直线l的相交情况,由两个学生上台板书后说明连接A、B两点的函数曲线交点必在区间 (a,b) 内。  观察下面函数f(x)=0的图象(例如 )。 ①f(a)·f(b)_____0(<或>);区间[a,b]上______(有/无)零点。 ②f(b)·f(c)_____0(<或>);区间[b,c]上______(有/无)零点。 ③f(c)·f(d)_____0(<或>);区间[c,d]上______(有/无)零点。 老师问:由以上两步,你可以得出什么样的结论? 一般地,我们有:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。 注:(1)连续不断的一条函数,反例y=1/x (2)f(a)·f(b)<0 5.例题巩固 判断方程 在[0,1]上有没有根。 6.二分法求方程的近似解 现在假设我手中的这个粉笔盒(顺手在讲台上拿的)的价格在1元到3元之间,大家猜猜这个是多少钱,(学生大多会猜测2元),好的,我再提示,价格比2元多点,(学生可能会猜测2.5元),我会再提示,比2.5元少一点。这个时候我们是不是已经把粉笔盒的价格区间从刚开始的1元到3元,缩小到2元到2.5元之间了?这个就是二分法的思想了。 我们经常需要寻找f(x)的根,对于一元二次方程,我们可以利用求根公式来求得f(x)的根,但是,对于f(x)=lnX+2x-6,你能猜它的零点大概是什么吗?这个时候,我们就可以利用二分法来求出方程的近似解。大家一起来解决下面这个例题。 例题:求方程 在[0,1]上的近似解(精确度为0.3) 解:(1)令 因为 则方程在区间[0,1]有解,[0,1]称为有解区间; (2)取[0,1]的区间中点0.5; (3)计算 (4)取[0.5,1]的区间中点0.75 (5)计算 (6)由于 ,精度为1-0.75=0.25<0.3;改区间精确度已满足要求。所以取区间[0.75,1]的中点0.875,它是方程的一个近似解。 7.作业                                   四中教师公开课、试验课教案(二)     一、  学习内容分析: “方程的根与函数的零点”一课的主要教学内容有函数的零点的定义和函数零点存在的判定方法(即零点存在定理),不仅为后继学习做铺垫,而且从中学数学内容结构来看,本课的内容也可以看作是函数概念的一个子概念,是函数概念外延的一次扩充。给出函数零点概念的目的是把函数与方程联系起来,用函数的观点统领中学代数知识,把所有的中学代数问题都统一到函数的思想之下,从这个角度看本节课还应承载建立函数与方程数学思想的任务. “函数的零点”这个概念体现了联系的观点、整体地看问题,通过转化解决问题,蕴涵了数形结合、化归的数学思想。因此在概念的教学中不但要注重知识的学习,而且要把它作为一个载体,通过概念的获得培养学生的抽象概括等能力,领会数形结合、化归等数学思想. “二分法”的思想在日常生活中的运用极其广泛,掌握利用二分法求解方程的近似解,将有助于学生更系统地掌握函数的逼近思想。 二、  教学目标: 1、知识与技能:由观察几个具体的方程与相应函数的图像,发现方程的根与函数的零点之间的关系,培养学生观察和发现的能力,以及从特殊到一般的方法,从而了解函数的零点与方程根的联系,形成函数零点的概念及零点存在的判定方法。 2、过程与方法:在应用函数研究方程的过程中,体会函数与方程思想,数形结合思想以及化归思想;把从特殊函数零点存在的判定方法上升到一般函数,体现了从特殊到一般的研究方法。 3、情感态度价值观:在求解方程根的“山穷水尽”,到利用二分法研究函数零点的“柳暗花明”,学生了解数学的发展史,感受探究的乐趣。 二、教学重难点: 1、 重点:函数零点的概念,方程的根与函数零点之间的联系,用函数的方法求解方程的根;零点存在定理的发现;用二分法求解方程的近似解。 2、难点:用函数的方法求解方程的根;零点存在定理的发现与准确理解。                                                                                         三、教学流程: 1、函数零点的概念 我们先给出函数零点的概念。 对于函数f(x) ,我们把使 f(x)=0成立的实数x叫做函数 的零点。 2、例:求零点 (1) (2) (3) 注:(1)函数零点是一个实数,当函数的自变量取这个实数时,其函数值等于零,零点不是一个点坐标; (2)函数的零点也就是函数 图象与x轴交点的横坐标; (3)求零点就是求方程 的实数根。 这样,函数 的零点就是方程 的实数根,也就是函数 的图象与x轴交点的横坐标。 3、方程的根与函数的零点    有了函数零点的概念,以及明白了函数零点表示的意思,重新表述上面的结论,我们有: ①方程的不同实数根的个数=函数的零点个数(=函数的图像与横轴的交点个数); ②方程的实数根(值)=函数的零点(值)(=函数的图像与横轴的交点的横坐标(值)); 例题:P79(11) 4、零点存在性的探索 用连续不断的几条曲线连接如图4  A、B两点,观察所画曲线与直线l的相交情况,由两个学生上台板书:   .A  a  b 0 l .B 图4                                                             四中教师公开课、试验课教案(三)                                 两个学生画出连接A、B两点的几条曲线后发现这些曲线必与直线l相交。再 用连续不断的几条函数曲线连接如图A、B两点,观察所画曲线与直线l的相交情况,由两个学生上台板书后说明连接A、B两点的函数曲线交点必在区间 (a,b) 内。  观察下面函数f(x)=0的图象(例如 )。 ①f(a)·f(b)_____0(<或>);区间[a,b]上______(有/无)零点。 ②f(b)·f(c)_____0(<或>);区间[b,c]上______(有/无)零点。 ③f(c)·f(d)_____0(<或>);区间[c,d]上______(有/无)零点。 老师问:由以上两步,你可以得出什么样的结论? 一般地,我们有:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。 注:(1)连续不断的一条函数,反例y=1/x (2)f(a)·f(b)<0 5.例题巩固 判断方程 在[0,1]上有没有根。 6.二分法求方程的近似解 现在假设我手中的这个粉笔盒(顺手在讲台上拿的)的价格在1元到3元之间,大家猜猜这个是多少钱,(学生大多会猜测2元),好的,我再提示,价格比2元多点,(学生可能会猜测2.5元),我会再提示,比2.5元少一点。这个时候我们是不是已经把粉笔盒的价格区间从刚开

【「教案」零点二分法-佳漫】相关文章:

国漫和日漫的差距作文12-28

零点的回忆作文08-08

漫想春天作文03-07

往事漫忆作文07-28

门的漫想作文07-28

永不漫灭的回忆作文[精选]10-11

永不漫灭的回忆作文09-08

游漫吞吞王国作文11-04

永不漫灭的回忆作文03-23

漫郎陈与义赏析03-12