初二数学知识点总结

时间:2022-04-25 09:24:56 总结 我要投稿

初二数学知识点总结(精选5篇)

  在平时的学习中,看到知识点,都是先收藏再说吧!知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。还在苦恼没有知识点总结吗?以下是小编为大家收集的初二数学知识点总结(精选5篇),仅供参考,欢迎大家阅读。

初二数学知识点总结(精选5篇)

  初二数学知识点总结1

  实数

  无理数:无限不循环小数叫无理数

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  相信通过上面的学习,同学们对实数知识点可以很好的掌握了,希望同学们在考试中取得好成绩。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义

  把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  ④因式分解与整式乘法的关系:m(a+b+c)

  公因式:

  一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法

  ①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

  初二数学知识点总结2

  一.定义

  1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.

  2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.

  3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.

  4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

  5.无限不循环小数又叫无理数.

  6.有理数和无理数统称实数.

  7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的。

  二.重点

  1.平方与开平方互为逆运算.

  2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.

  3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.

  4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.

  5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.

  三.注意

  1.被开方数一定是非负数.

  2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.

  3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

  以上就是数学网为大家提供的初二数学知识点总结:实数希望能对考生产生帮助,更多资料请咨询数学网中考频道。

  初二数学知识点总结3

  第一章 一次函数

  1 函数的定义,函数的定义域、值域、表达式,函数的图像

  2 一次函数和正比例函数,包括他们的表达式、增减性、图像

  3 从函数的观点看方程、方程组和不等式

  第二章 数据的描述

  1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点

  条形图特点:

  (1)能够显示出每组中的具体数据;

  (2)易于比较数据间的差别

  扇形图的特点:

  (1)用扇形的面积来表示部分在总体中所占的百分比;

  (2)易于显示每组数据相对与总数的大小

  折线图的特点;

  易于显示数据的变化趋势

  直方图的特点:

  (1)能够显示各组频数分布的情况;

  (2)易于显示各组之间频数的差别

  2 会用各种统计图表示出一些实际的问题

  第三章 全等三角形

  1 全等三角形的性质:

  全等三角形的对应边、对应角相等

  2 全等三角形的判定

  边边边、边角边、角边角、角角边、直角三角形的HL定理

  3 角平分线的性质

  角平分线上的点到角的两边的距离相等;

  到角的两边距离相等的点在角的平分线上.

  第四章 轴对称

  1 轴对称图形和关于直线对称的.两个图形

  2 轴对称的性质

  轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

  如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

  线段垂直平分线上的点到线段两个端点的距离相等;

  到线段两个端点距离相等的点在这条线段的垂直平分线上

  3 用坐标表示轴对称

  点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).

  4 等腰三角形

  等腰三角形的两个底角相等;(等边对等角)

  等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)

  一个三角形的两个相等的角所对的边也相等.(等角对等边)

  5 等边三角形的性质和判定

  等边三角形的三个内角都相等,都等于60度;

  三个角都相等的三角形是等边三角形;

  有一个角是60度的等腰三角形是等边三角形;

  推论:

  直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.

  在三角形中,大角对大边,大边对大角.

  第五章 整式

  1 整式定义、同类项及其合并

  2 整式的加减

  3 整式的乘法

  (1)同底数幂的乘法:

  (2)幂的乘方

  (3)积的乘方

  (4)整式的乘法

  4 乘法公式

  (1)平方差公式

  (2)完全平方公式

  5 整式的除法

  (1)同底数幂的除法

  (2)整式的除法

  6 因式分解

  (1)提共因式法

  (2)公式法

  (3)十字相乘法

  初二数学知识点总结4

  第一章 分式

  1 分式及其基本性质

  分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2 分式的运算

  (1)分式的乘除

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

  除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.

  (2) 分式的加减

  加减法法则:同分母分式相加减,分母不变,把分子相加减;

  异分母分式相加减,先通分,变为同分母的分式,再加减

  3 整数指数幂的加减乘除法

  4 分式方程及其解法

  第二章 反比例函数

  1 反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2 反比例函数在实际问题中的应用

  第三章 勾股定理

  1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.

  第四章 四边形

  1 平行四边形

  性质:对边相等;对角相等;对角线互相平分.

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形.

  推论:三角形的中位线平行第三边,并且等于第三边的一半.

  2 特殊的平行四边形:矩形、菱形、正方形

  (1) 矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定: 有一个角是直角的平行四边形是矩形;

  对角线相等的平行四边形是矩形;

  推论: 直角三角形斜边的中线等于斜边的一半.

  (2) 菱形

  性质:菱形的四条边都相等;

  菱形的对角线互相垂直,并且每一条对角线平分一组对角;

  菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;

  对角线互相垂直的平行四边形是菱形;

  四边相等的四边形是菱形.

  (3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.

  3 梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;

  等腰梯形的两条对角线相等;

  同一个底上的两个角相等的梯形是等腰梯形.

  第五章 数据的分析

  加权平均数、中位数、众数、极差、方差

  初二数学知识点总结5

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)具有平行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是平行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

【初二数学知识点总结(精选5篇)】相关文章:

苏教版小学数学知识点总结04-24

新高一数学知识点总结04-24

小学生的数学知识点总结04-24

初二数学教研计划04-20

数学分析第六章知识点总结04-24

防诈骗知识点总结04-22

疫情防护知识点总结04-20

初中数学教研组总结(精选7篇)04-21

小学数学双减作业总结(精选9篇)04-21

数学工作总结04-09